[1] |
李德仁. 论时空大数据的智能处理与服务[J]. 地球信息科学学报, 2019, 21(12): 1825-1831.
|
|
LI Deren. The intelligent processing and service of spatiotemporal big data[J]. Journal of Geo-information Science, 2019, 21(12): 1825-1831.
|
[2] |
王结臣, 王豹, 胡玮, 等. 并行空间分析算法研究进展及评述[J]. 地理与地理信息科学, 2011, 27(6): 1-5.
|
|
WANG Jiechen, WANG Bao, HU Wei, et al. Review on parallel spatial analysis algorithms[J]. Geography and Geo-Information Science, 2011, 27(6): 1-5.
|
[3] |
范俊甫. 并行化矢量多边形叠加算法研究[J]. 测绘学报, 2016, 45(4): 502. DOI:.
doi: 10.11947/j.AGCS.2016.20150495
|
|
FAN Junfu. Parallel algorithms for polygon overlapping[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(4): 502. DOI:.
doi: 10.11947/j.AGCS.2016.20150495
|
[4] |
SUTHERLAND I E, HODGMAN G W. Reentrant polygon clipping[J]. Communications of the ACM, 1974, 17(1): 32-42.
|
[5] |
WEILER K, ATHERTON P, WEILER K, et al. Hidden surface removal using polygon area sorting[C]//Proceedings of the 4th Annual Conference on Computer Graphics and Interactive Techniques. San Jose: ACM Press, 1977: 214-222.
|
[6] |
VATTI B R. A generic solution to polygon clipping[J]. Communications of the ACM, 1992, 35(7): 56-63.
|
[7] |
RUSHMEIER H, GREINER G, HORMANN K. Efficient clipping of arbitrary polygons[J]. ACM Transactions on Graphics, 1998, 17(2): 71-83.
|
[8] |
刘勇奎, 高云, 黄有群. 一个有效的多边形裁剪算法[J]. 软件学报, 2003, 14(4): 845-856.
|
|
LIU Yongkui, GAO Yun, HUANG Youqun. An efficient algorithm for polygon clipping[J]. Journal of Software, 2003, 14(4): 845-856.
|
[9] |
张志锟, 范俊甫, 徐少波, 等. 多边形叠加Vatti算法的VCS优化方法与GPU并行化[J]. 地球信息科学学报, 2022, 24(3): 437-447.
|
|
ZHANG Zhikun, FAN Junfu, XU Shaobo, et al. VCS optimization method of Vatti algorithm for polygon overlay and parallelization using GPU[J]. Journal of Geo-information Science, 2022, 24(3): 437-447.
|
[10] |
ZHOU Yuke, WANG Shaohua, GUAN Yong. An efficient parallel algorithm for polygons overlay analysis[J]. Applied Sciences, 2019, 9(22): 4857.
|
[11] |
苏诚, 韩俊刚. Sutherland-Hodgman裁剪算法的改进[J]. 西安邮电大学学报, 2013, 18(3): 80-82.
|
|
SU Cheng, HAN Jungang. An advanced Sutherland-Hodgman algorithm[J]. Journal of Xi'an University of Posts and Telecommunications, 2013, 18(3): 80-82.
|
[12] |
赵斯思, 周成虎. GPU加速的多边形叠加分析[J]. 地理科学进展, 2013, 32(1): 7.
|
|
ZHAO Sisi, ZHOU Chenghu. Accelerating polygon overlay analysis by GPU[J]. Progress in Geography, 2013, 32(1): 7.
|
[13] |
蒋元义, 金宝轩, 赵康, 等. 叠置计算中多边形形状复杂度的度量研究[J]. 测绘科学, 2020, 45(11): 177-184.
|
|
JIANG Yuanyi, JIN Baoxuan, ZHAO Kang, et al. Research on measurement of polygon shape complexity in overlay calculation[J]. Science of Surveying and Mapping, 2020, 45(11): 177-184.
|
[14] |
HUANG Fang, TIE Bo, TAO Jian, et al. Methodology and optimization for implementing cluster-based parallel geospatial algorithms with a case study[J]. Cluster Computing, 2020, 23(2): 673-704.
|
[15] |
ZHOU Chen, LI Manchun. A systematic parallel strategy for generating contours from large-scale DEM data using collaborative CPUs and GPUs[J]. Cartography and Geographic Information Science, 2021, 48(3): 187-209.
|
[16] |
ZHOU Chen, LI Manchun. Performance evaluation of spatial indexing to identify polygon intersection[J]. Geocarto International, 2020, 35(16): 1850-1872.
|
[17] |
ZHAO Kang, JIN Baoxuan, FAN Hong, et al. A data allocation strategy for geocomputation based on shape complexity in a cloud environment using parallel overlay analysis of polygons as an example[J]. IEEE Access, 2020, 8: 185981-185991.
|
[18] |
范俊甫, 孔维华, 马廷, 等. RaPC:一种基于栅格化思想的多边形裁剪算法及其误差分析[J]. 测绘学报, 2015, 44(3): 338-345. DOI:.
doi: 10.11947/j.AGCS.2015.20140017
|
|
FAN Junfu, KONG Weihua, MA Ting, et al. RaPC: a rasterization-based polygon clipping algorithm and its error analysis[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(3): 338-345. DOI:.
doi: 10.11947/j.AGCS.2015.20140017
|
[19] |
FAN Junfu, HE Huixin, HU Taoying, et al. Rasterization computing-based parallel vector polygon overlay analysis algorithms using OpenMP and MPI[J]. IEEE Access, 2018, 6: 21427-21441.
|
[20] |
卢风顺, 宋君强, 银福康, 等. CPU/GPU协同并行计算研究综述[J]. 计算机科学, 2011, 38(3): 5-9.
|
|
LU Fengshun, SONG Junqiang, YIN Fukang, et al. Survey of CPU/GPU synergetic parallel computing[J]. Computer Science, 2011, 38(3): 5-9.
|
[21] |
MITTAL S, VETTER J S. A survey of CPU-GPU heterogeneous computing techniques[J]. ACM Computing Surveys, 2015, 47(4): 1-35.
|
[22] |
方留杨, 王密, 李德仁. CPU和GPU协同处理的光学卫星遥感影像正射校正方法[J]. 测绘学报, 2013, 42(5): 668-675.
|
|
FANG Liuyang, WANG Mi, LI Deren. A CPU-GPU co-processing orthographic rectification approach for optical satellite imagery[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(5): 668-675.
|
[23] |
VESTIAS M, NETO H. Trends of CPU, GPU and FPGA for high-performance computing[C]//Proceedings of 2014 International Conference on Field Programmable Logic and Applications. Munich: IEEE, 2014: 1-6.
|
[24] |
徐云耘, 周琛, 李满春. CPU+GPU异构环境下数据密集型矢量多边形地理大数据并行框架[J]. 测绘通报, 2022(5): 110-119.
|
|
XU Yunyun, ZHOU Chen, LI Manchun. A parallel framework for data-intensive geospatial analysis on large-scale vector polygons over hybrid CPUs and GPUs[J]. Bulletin of Surveying and Mapping, 2022(5): 110-119.
|
[25] |
ZHANG Peng, FAN Junfu, ZHANG Panpan, et al. Comparative study on the effect of shape complexity on the efficiency of different overlay analysis algorithms[J]. IEEE Access, 2021, 9: 144179-144194.
|