
测绘学报 ›› 2025, Vol. 54 ›› Issue (2): 334-344.doi: 10.11947/j.AGCS.2025.20230329
涂伟1,2,3(
), 池向沅1,2,3, 赵天鸿1,4(
), 杨剑5, 朱世平6, 陈德莉6
收稿日期:2023-08-10
出版日期:2025-03-11
发布日期:2025-03-11
通讯作者:
赵天鸿
E-mail:tuwei@szu.edu.cn;zhaotianhong@sztu.edu.cn
作者简介:涂伟(1984—),男,博士,教授,研究方向为城市时空大数据分析方法及应用。 E-mail:tuwei@szu.edu.cn
基金资助:
Wei TU1,2,3(
), Xiangyuan CHI1,2,3, Tianhong ZHAO1,4(
), Jian YANG5, Shiping ZHU6, Deli CHEN6
Received:2023-08-10
Online:2025-03-11
Published:2025-03-11
Contact:
Tianhong ZHAO
E-mail:tuwei@szu.edu.cn;zhaotianhong@sztu.edu.cn
About author:TU Wei (1984—), male, PhD, professor, majors in urban spatio-temporal big data analysis methods and applications. E-mail: tuwei@szu.edu.cn
Supported by:摘要:
城市排水管网的流量是其运行效率和安全的关键指标,准确的流量预测对排水管网运行风险预警、优化其运行效率及规划布局至关重要。水流量不仅受到其自身动力学特性的影响,还与管网的空间结构紧密相关,但传统水流量预测方法较少关注水流在管道之间复杂多维的空间依赖关系。针对这一问题,本文提出了一种基于多视图的时空图网络模型,该模型综合考虑了排水管网的空间邻近性和节点间的属性相似性。分别构建最近邻拓扑视图与流量相似性属性视图,使用时空图卷积网络挖掘流量特征的内在时空依赖,利用注意力机制对多个视图的时空依赖特征进行融合以获得流量预测值。利用某市排水管网历史水流监测数据进行试验,结果表明本文提出的多视图时空图神经网络模型取得了较好的预测性能,多视图对比试验验证了不同视图在模型中起到的贡献。
中图分类号:
涂伟, 池向沅, 赵天鸿, 杨剑, 朱世平, 陈德莉. 城市排水管网流量预测多视图时空图神经网络模型[J]. 测绘学报, 2025, 54(2): 334-344.
Wei TU, Xiangyuan CHI, Tianhong ZHAO, Jian YANG, Shiping ZHU, Deli CHEN. Multi-view spatio-temporal graph convolutional networks model for urban drainage networks flow prediction[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(2): 334-344.
表2
各模型预测精度结果对比"
| 模型 | MAPE | RMSE/(m3/s) | ||||||
|---|---|---|---|---|---|---|---|---|
| 15 min | 30 min | 45 min | 60 min | 15 min | 30 min | 45 min | 60 min | |
| ARIMA | 0.176 | 0.238 | 0.258 | 0.276 | 0.107 | 0.141 | 0.153 | 0.165 |
| RFR | 0.146 | 0.161 | 0.175 | 0.190 | 0.090 | 0.095 | 0.101 | 0.110 |
| LSTM | 0.155 | 0.152 | 0.155 | 0.149 | 0.106 | 0.108 | 0.109 | 0.112 |
| AutoEncoder | 0.142 | 0.138 | 0.146 | 0.152 | 0.105 | 0.104 | 0.103 | 0.106 |
| GWNet | 0.099 | 0.118 | 0.128 | 0.139 | 0.075 | 0.080 | 0.084 | 0.089 |
| AGCRN | 0.095 | 0.104 | 0.118 | 0.118 | 0.081 | 0.085 | 0.087 | 0.090 |
| MVSTGCN | 0.097 | 0.102 | 0.106 | 0.111 | 0.075 | 0.078 | 0.080 | 0.083 |
| [1] | HUANG Dong, LIU Xiuhong, JIANG Songzhu, et al. Current state and future perspectives of sewer networks in urban China[J]. Frontiers of Environmental Science & Engineering, 2018, 12(3): 2. |
| [2] |
李清泉, 张德津, 汪驰升, 等. 动态精密工程测量技术及应用[J]. 测绘学报, 2021, 50(9): 1147-1158. DOI:.
doi: 10.11947/j.AGCS.2021.20210172 |
|
LI Qingquan, ZHANG Dejin, WANG Chisheng, et al. Technology and applications of dynamic and precise engineering surveying[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1147-1158. DOI:.
doi: 10.11947/j.AGCS.2021.20210172 |
|
| [3] | KHODASHENAS S R, TAJBAKHSH M. Management of urban drainage system using integrated MIKE SWMM and GIS[J]. Journal of Water Resource and Hydraulic Engineering, 2016, 5(1): 36-45. |
| [4] | VAN DER VOORT M, DOUGHERTY M, WATSON S. Combining Kohonen maps with ARIMA time series models to forecast traffic flow[J]. Transportation Research Part C: Emerging Technologies, 1996, 4(5): 307-318. |
| [5] | WANG Hao, SONG Lixiang. Water level prediction of rainwater pipe network using an SVM-based machine learning method[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2020, 34(2): 2051002. |
| [6] | KARIMI H S, NATARAJAN B, RAMSEY C L, et al. Comparison of learning-based wastewater flow prediction methodologies for smart sewer management[J]. Journal of Hydrology, 2019, 577: 123977. |
| [7] | ZHANG Duo, LINDHOLM G, RATNAWEERA H. Use long short-term memory to enhance Internet of Things for combined sewer overflow monitoring[J]. Journal of Hydrology, 2018, 556: 409-418. |
| [8] | 夏巍, 汪石, 梁祥莹. 基于改进GRU的城市供水管网流量预测研究[J]. 安徽建筑大学学报, 2023, 31(2): 51-54. |
| XIA Wei, WANG Shi, LIANG Xiangying. Research on flow forecasting methods for urban water supply network based on improved GRU[J]. Journal of Anhui Jianzhu University, 2023, 31(2): 51-54. | |
| [9] | 李双宇, 张明凯, 刘艳臣, 等. 基于LSTM模型的排水系统流量预测研究[J]. 中国给水排水, 2022, 38(5): 59-64. |
| LI Shuangyu, ZHANG Mingkai, LIU Yanchen, et al. Flow prediction of drainage system based on long short time memory model[J]. China Water & Wastewater, 2022, 38(5): 59-64. | |
| [10] | NGUYEN L V, TORNYEVIADZI H M, BUI D T, et al. Predicting discharges in sewer pipes using an integrated long short-term memory and entropy A-TOPSIS modeling framework[J]. Water, 2022, 14(3): 300. |
| [11] | SHENG Zheng, CAI Zhikai. GAT-GRU based model for water network flow prediction[C]//Proceedings of the 9th International Conference on Water Resource and Environment. Singapore: Springer, 2024: 151-162. |
| [12] | REN Yibin, CHEN Huanfa, HAN Yong, et al. A hybrid integrated deep learning model for the prediction of citywide spatio-temporal flow volumes[J]. International Journal of Geographical Information Science, 2020, 34(4): 802-823. |
| [13] |
于洋洋, 贺康杰, 武芳, 等. 面状居民地形状分类的图卷积神经网络方法[J]. 测绘学报, 2022, 51(11): 2390-2402. DOI:.
doi: 10.11947/j.AGCS.2022.20210134 |
|
YU Yangyang, HE Kangjie, WU Fang, et al. Graph convolution neural network method for shape classification of areal settlements[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(11): 2390-2402. DOI:.
doi: 10.11947/j.AGCS.2022.20210134 |
|
| [14] |
李静, 刘海砚, 郭文月, 等. 基于深度学习的人群活动流量时空预测模型[J]. 测绘学报, 2021, 50(4): 522-531. DOI:.
doi: 10.11947/j.AGCS.2021.20200230 |
|
LI Jing, LIU Haiyan, GUO Wenyue, et al. A spatio-temporal network for human activity prediction based on deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(4): 522-531. DOI:.
doi: 10.11947/j.AGCS.2021.20200230 |
|
| [15] | 井佩光, 田雨豆, 汪少初, 等. 基于动态扩散图卷积的交通流量预测算法[J]. 吉林大学学报(工学版), 2024, 54(6): 1582-1592. |
| JING Peiguang, TIAN Yudou, WANG Shaochu, et al. Traffic flow prediction algorithm based on dynamic diffusion graph convolution[J]. Journal of Jilin University (Engineering and Technology Edition), 2024, 54(6): 1582-1592. | |
| [16] | LIAO Ziyi, LIU Minghui, DU Bowen, et al. A temporal and spatial prediction method for urban pipeline network based on deep learning[J]. Physica A: Statistical Mechanics and Its Applications, 2022, 608: 128299. |
| [17] | YU Bing, YIN Haoteng, ZHU Zhanxing. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[EB/OL]. [2023-05-04]. https://arxiv.org/abs/1709.04875v4. |
| [18] | WU Shaofei. Spatiotemporal dynamic forecasting and analysis of regional traffic flow in urban road networks using deep learning convolutional neural network[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(2): 1607-1615. |
| [19] | LIU Zhichen, LIU Zhiyuan, FU Xiao. Dynamic origin-destination flow prediction using spatial-temporal graph convolution network with mobile phone data[J]. IEEE Intelligent Transportation Systems Magazine, 2022, 14(5): 147-161. |
| [20] | RAWAT W, WANG Zenghui. Deep convolutional neural networks for image classification: a comprehensive review[J]. Neural Computation, 2017, 29(9): 2352-2449. |
| [21] | DAUPHIN Y N, FAN A, AULI M, et al. Language modeling with gated convolutional networks[C]//Proceedings of the 34th International Conference on Machine Learning. Sydney: JMLR, 2017: 933-941. |
| [22] | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. [2023-05-04]. https://arxiv.org/abs/1609.02907v4. |
| [23] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 1-11. |
| [24] | GUO Shengnan, LIN Youfang, FENG Ning, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]//Proceedings of 2019 AAAI Conference on Artificial Intelligence. Honolulu: AAAI Press, 2019: 922-929. |
| [25] | NGUYEN N, QUANZ B. Temporal latent auto-encoder: a method for probabilistic multivariate time series forecasting[EB/OL]. [2023-05-04]. https://ojs.aaai.org/index.php/AAAI/article/download/17101/16908. |
| [26] | WU Zonghan, PAN Shirui, LONG Guodong, et al. Graph wavenet for deep spatial-temporal graph modeling[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Macao: ACM Press, 2019: 1907-1913. |
| [27] | BAI Lei, YAO Lina, LI Can, et al. Adaptive graph convolutional recurrent network for traffic forecasting[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver: ACM Press, 2020: 17804-17815. |
| [28] | WUNSCH A, LIESCH T, BRODA S. Forecasting groundwater levels using nonlinear autoregressive networks with exogenous input (NARX)[J]. Journal of Hydrology, 2018, 567: 743-758. |
| [1] | 邱越, 武芳, 翟仁健, 钱海忠, 黄哲琨, 李博. 面向匹配优化的多源建筑物实体级保形空间对齐模型[J]. 测绘学报, 2025, 54(12): 2262-2275. |
| [2] | 张锦彬, 朱军, 党沛, 周宇轩, 杨博文. 现场直播式地理信息服务:基于VR全景的现场实况远程临浸感知[J]. 测绘学报, 2025, 54(12): 2276-2286. |
| [3] | 张岩. 基于街景影像的城市功能区多尺度时空感知方法[J]. 测绘学报, 2025, 54(12): 2289-2289. |
| [4] | 曾进. 城市社会空间的空间大数据量化表达与分析方法:以深圳市为例[J]. 测绘学报, 2025, 54(12): 2292-2292. |
| [5] | 刘少俊. 基于手机信令数据的城市人群活动时空格局分析研究[J]. 测绘学报, 2025, 54(12): 2295-2295. |
| [6] | 吴超, 梁咏翔, 岳瀚, 崔远政, 黄波. 面向计数数据的时空地理加权泊松回归模型[J]. 测绘学报, 2025, 54(11): 2026-2039. |
| [7] | 王小龙, 王卓, 李精忠, 闫浩文. 微地图制图的空间方向关系转译法[J]. 测绘学报, 2025, 54(11): 2040-2051. |
| [8] | 胡鑫, 杨学习, 江一凡, 王宪彬, 丁晨, 谢顾然, 邓敏. 基于多智能体层次化协同的地理事件抽取与时空解析[J]. 测绘学报, 2025, 54(11): 2052-2067. |
| [9] | 李俊, 李朝奎, 黄磊, 冯媛媛. 高速公路广告牌巡检目标跟踪的改进ByteTrack算法[J]. 测绘学报, 2025, 54(11): 2068-2080. |
| [10] | 叶欣宇, 徐胜华, 刘纪平, 陈虹宇, 王琢璐, 李维炼. 基于时空因果推断的下一个兴趣点推荐[J]. 测绘学报, 2025, 54(11): 2081-2096. |
| [11] | 赵学胜, 谢文澜, 孙文彬. 空间格网互操作的研究进展与关键问题[J]. 测绘学报, 2025, 54(10): 1727-1740. |
| [12] | 高凡, 路威, 甘麟露, 章繁, 荣凤娟, 汤士涵. 智能驱动的并行地理计算引擎框架[J]. 测绘学报, 2025, 54(10): 1877-1892. |
| [13] | 吴浩宇, 朱庆, 丁雨淋, 鲍榴, 刘利. 数据模型知识协同驱动的隧道围岩高精度数字孪生建模方法[J]. 测绘学报, 2025, 54(10): 1893-1906. |
| [14] | 郝彧露. 时空数据驱动的城市区域火灾风险评估预测模型及应用[J]. 测绘学报, 2025, 54(10): 1910-1910. |
| [15] | 张付兵, 孙群, 徐青, 马京振, 黄文君, 陈若虚. 随机森林和图神经网络支持下的河系自动分级与选取方法[J]. 测绘学报, 2025, 54(9): 1697-1711. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||