| [1] |
许怡然, 鲁帆, 谢子波, 等. 潮白河流域气象水文干旱特征及其响应关系[J]. 干旱地区农业研究, 2019, 37(2): 220-228.
|
|
XU Yiran, LU Fan, XIE Zibo, et al. Characteristics and responses of hydrological and meteorological drought in Chaobai River basin[J]. Agricultural Research in the Arid Areas, 2019, 37(2): 220-228.
|
| [2] |
KADAPALA B K R, ASHA FARSANA M, GEETHA VIMALA C H, et al. A grid-wise approach for accurate computation of standardized runoff index (SRI)[J]. Science of the Total Environment, 2024, 946: 174472.
|
| [3] |
ZHAO Qingzhi, LIU Kang, SUN Tingting, et al. A novel regional drought monitoring method using GNSS-derived ZTD and precipitation[J]. Remote Sensing of Environment, 2023, 297: 113778.
|
| [4] |
SHUKLA S, WOOD A W. Use of a standardized runoff index for characterizing hydrologic drought[J]. Geophysical Research Letters, 2008, 35(2): L02405.
|
| [5] |
NALBANTIS I, TSAKIRIS G. Assessment of hydrological drought revisited[J]. Water Resources Management, 2009, 23(5): 881-897.
|
| [6] |
GUTTMAN N B. A sensitivity analysis of the palmer hydrologic drought index[J]. JAWRA Journal of the American Water Resources Association, 1991, 27(5): 797-807.
|
| [7] |
SHAFER B, DEZMAN L. Development of a surface water supply index (SWSI) to assess the severity of drought conditions in snowpack runoff areas[C]//Proceedings of 1982 Annual Western Snow Conference. Fort Collins: [s.n.], 1982: 164-175.
|
| [8] |
ANDERSON E S, SCHILLING K E. Expanding the applications of the standardized streamflow index through regionalization[J]. Journal of the American Water Resources Association, 2024, 60(4): 837-850.
|
| [9] |
粟晓玲, 张更喜, 冯凯. 干旱指数研究进展与展望[J]. 水利与建筑工程学报, 2019, 17(5): 9-18.
|
|
SU Xiaoling, ZHANG Gengxi, FENG Kai. Progress and perspective of drought index[J]. Journal of Water Resources and Architectural Engineering, 2019, 17(5): 9-18.
|
| [10] |
HAO Zengchao, AGHAKOUCHAK A. A nonparametric multivariate multi-index drought monitoring framework[J]. Journal of Hyd-rometeorology, 2014, 15(1): 89-101.
|
| [11] |
FENG Keting, CAO Yanping, DU Erji, et al. Spatiotemporal dynamics of drought and the ecohydrological response in central Asia[J]. Remote Sensing, 2025, 17(1): 166.
|
| [12] |
栾奎峰, 薛家盛, 冯贵平, 等. 基于GRACE/GRACE-FO的黄河流域水储量及干旱特征研究[J]. 干旱区研究, 2025, 42(2): 246-257.
|
|
LUAN Kuifeng, XUE Jiasheng, FENG Guiping, et al. Drought characteristics of terrestrial water storage in the Yellow River basin based on GRACE/GRACE-FO[J]. Arid Zone Research, 2025, 42(2): 246-257.
|
| [13] |
ZHAO Meng, GERUO A, VELICOGNA I, et al. A global gridded dataset of GRACE drought severity index for 2002-14: comparison with PDSI and SPEI and a case study of the Australia millennium drought[J]. Journal of Hydrometeorology, 2017, 18(8): 2117-2129.
|
| [14] |
LIU Xiaojun, WANG Naiang, WANG Yixin, et al. Research on groundwater drought and sustainability in badain jaran desert and surrounding areas based on GRACE satellite[J]. Land, 2025, 14(1): 173.
|
| [15] |
REN Jintao, XU Min, KANG Shichang, et al. Comprehensive understanding of hydrological drought based on GRACE data at multiple spatiotemporal scales in Northwest China[J]. Natural Hazards, 2025, 121(3): 2465-2481.
|
| [16] |
HU Fengmin, YANG Beibei, WEI Zushuai, et al. Filling the data gap between GRACE and GRACE-FO based on a two-step reconstruction method[J]. International Journal of Digital Earth, 2025, 18(1): 2468418.
|
| [17] |
YAO Chaolong, SHUM C K, LUO Zhicai, et al. An optimized hydrological drought index integrating GNSS displacement and satellite gravimetry data[J]. Journal of Hydrology, 2022, 614: 128647.
|
| [18] |
ZHANG Xu, LI Jinbao, WANG Zifeng, et al. Global hydroclimatic drivers of terrestrial water storage changes in different climates[J]. Catena, 2022, 219: 106598.
|
| [19] |
TANG Miao, YUAN Linguo, JIANG Zhongshan, et al. Characterization of hydrological droughts in Brazil using a novel multiscale index from GNSS[J]. Journal of Hydrology, 2023, 617: 128934.
|
| [20] |
JIANG Zhongshan, HSU Y J, YUAN Linguo, et al. Insights into hydrological drought characteristics using GNSS-inferred large-scale terrestrial water storage deficits[J]. Earth and Planetary Science Letters, 2022, 578: 117294.
|
| [21] |
JIANG Zhongshan, HSU Y J, YUAN Linguo, et al. Characterizing spatiotemporal patterns of terrestrial water storage variations using GNSS vertical data in Sichuan, China[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(12): e2021JB022398.
|
| [22] |
瞿伟, 晋泽辉, 张勤, 等. GRACE与GRACE Follow-On重力卫星数据揭示出的黄河流域2002—2020年干旱特征[J]. 测绘学报, 2023, 52(5): 714-724. DOI: .
doi: 10.11947/j.AGCS.2023.20210458
|
|
QU Wei, JIN Zehui, ZHANG Qin, et al. Drought characteristics of the Yellow River basin from 2002 to 2020 revealed by GRACE and GRACE follow-on data[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(5): 714-724. DOI: .
doi: 10.11947/j.AGCS.2023.20210458
|
| [23] |
姚朝龙, 陈涌鑫, 罗志才, 等. GNSS/GRACE/GRACE-FO/气象数据结合反演干旱指数[J]. 测绘学报, 2023, 52(11): 1883-1891. DOI: .
doi: 10.11947/j.AGCS.2023.20220484
|
|
YAO Chaolong, CHEN Yongxin, LUO Zhicai, et al. A drought index derived from a combination of GNSS GRACE/GRACE-FO and meteorological data[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(11): 1883-1891. DOI: .
doi: 10.11947/j.AGCS.2023.20220484
|
| [24] |
PENG Yujie, CHEN Gang, CHAO Nengfang, et al. Detection of extreme hydrological droughts in the Poyang lake basin during 2021—2022 using GNSS-derived daily terrestrial water storage anomalies[J]. Science of the Total Environment, 2024, 919: 170875.
|
| [25] |
XIONG Jinghua, GUO Shenglian, ABHISHEK , et al. A novel standardized drought and flood potential index based on reconstructed daily GRACE data[J]. Journal of Hydrometeorology, 2022, 23(9): 1419-1438.
|
| [26] |
庞亚瑾, 张怀, 程惠红, 等. 华北地区地下水开采对地壳应力的影响[J]. 地球物理学报, 2016, 59(4): 1394-1402.
|
|
PANG Yajin, ZHANG Huai, CHENG Huihong, et al. Changes of crustal stress induced by groundwater over-pumping in North China Plain[J]. Chinese Journal of Geophysics, 2016, 59(4): 1394-1402.
|
| [27] |
李莎, 朱春瑞, 惠雪飘, 等. 贵州省水文干旱演变趋势及特征分析[J/OL]. 人民珠江. [2024-12-13]. https://link.cnki.net/urlid/44.1037.TV.20250210.1626.014.
|
|
LI Sha, ZHU Chunrui, HUI Xuepiao, et al. Analysis of the evolutionary trends and characteristics of hydrological drought in Guizhou province[J/OL]. People's Pearl River. [2024-12-13]. https://link.cnki.net/urlid/44.1037.TV.20250210.1626.014.
|
| [28] |
ZHAO Qingzhi, LIU Kang, LI Zufeng, et al. A novel ENSO monitoring index and its potential for drought application[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 225: 105762.
|
| [29] |
ZHAO Qingzhi, LIU Yang, YAO Wanqiang, et al. A novel ENSO monitoring method using precipitable water vapor and temperature in southeast China[J]. Remote Sensing, 2020, 12(4): 649.
|
| [30] |
ZHANG Bao, LIU Lin, KHAN S A, et al. Transient variations in glacial mass near Upernavik Isstrøm (west Greenland) detected by the combined use of GPS and GRACE data[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(12): 10626-10642.
|
| [31] |
GHIL M, VAUTARD R. Interdecadal oscillations and the warming trend in global temperature time series[J]. Nature, 1991, 350(6316): 324-327.
|