测绘学报 ›› 2026, Vol. 55 ›› Issue (1): 114-123.doi: 10.11947/j.AGCS.2026.20250171

• 摄影测量学与遥感 • 上一篇    

扩散特征约束的小样本光学遥感异常检测方法

党宇1,2(), 朱建军1(), 付海强1, 赵海涛2, 陈海鹏2   

  1. 1.中南大学地球科学与信息物理学院,湖南 长沙 410083
    2.国家测绘产品质量检验测试中心,北京 100830
  • 收稿日期:2025-04-07 修回日期:2026-01-08 发布日期:2026-02-13
  • 通讯作者: 朱建军 E-mail:dang1001011@163.com;zjj@csu.edu.cn
  • 作者简介:党宇(1992—),男,博士生,研究方向为遥感智能化解译。E-mail:dang1001011@163.com
  • 基金资助:
    国家自然科学基金(42227801)

Anomaly detection method for small-sample optical remote sensing constrained by diffusion characteristics

Yu DANG1,2(), Jianjun ZHU1(), Haiqiang FU1, Haitao ZHAO2, Haipeng CHEN2   

  1. 1.School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
    2.National Quality Inspection and Testing Center for Surveying and Mapping Products, Beijing 100830, China
  • Received:2025-04-07 Revised:2026-01-08 Published:2026-02-13
  • Contact: Jianjun ZHU E-mail:dang1001011@163.com;zjj@csu.edu.cn
  • About author:DANG Yu (1992—), male, PhD candidate, majors in intelligent interpretation of remote sensing. E-mail: dang1001011@163.com
  • Supported by:
    The National Natural Science Foundation of China(42227801)

摘要:

针对小样本光学遥感异常检测中数据源复杂、模型泛化能力不足等挑战,本文提出了一种扩散特征约束的小样本光学遥感异常检测方法。该方法通过引入扩散模型的噪声空间建模能力,增强了特征学习的稳定性和能力,并以重建误差的偏离度为基础实现了小样本场景下的异常检测。以武汉大学AID数据集为试验数据,将本文方法和卷积自编码器基准方法进行对比试验。试验结果表明,本文方法将空间熵均值从3.65降至3.51,光谱熵均值从5.77降至5.62,量化指标均显著提升,且重建结果在视觉上更完整、噪声更少。异常检测试验模拟了国家标准中常见的纹理不清、条带噪声等影像异常,在训练集异常样本占比1.5%~2.5%的小样本场景中,通过主观视觉评价及量化指数分析表明,负样本在多数地类中可分性良好。本文验证了扩散特征约束在小样本异常检测中的有效性,为光学遥感质量评估提供了一种思路。

关键词: 重建误差, 小样本, 异常检测, 扩散模型, 卷积自编码器

Abstract:

Addressing the challenges of complex data sources and insufficient model generalization ability in small-sample optical remote sensing anomaly detection, this paper proposes a diffusion feature-constrained small-sample optical remote sensing anomaly detection method. By introducing the noise space modeling capability of the diffusion model, this method enhances the stability and capability of feature learning, and achieves anomaly detection in small-sample scenarios based on the deviation degree of reconstruction error. Using the Wuhan University AID dataset as experimental data, a comparative experiment was conducted between the proposed method and the convolutional autoencoder benchmark method. The experimental results show that the proposed method reduces the spatial entropy mean from 3.65 to 3.51 and the spectral entropy mean from 5.77 to 5.62, with significant improvements in quantitative indicators. Furthermore, the reconstruction results are visually more complete and less noisy. The anomaly detection experiment simulates common image anomalies such as unclear textures and striping noise in national standards. In small-sample scenarios where the proportion of abnormal samples in the training set is 1.5%to 2.5%, subjective visual evaluation and quantitative index analysis indicate that the negative samples are well separable in most land types. This paper verifies the effectiveness of diffusion feature constraints in small-sample anomaly detection, providing ideas for optical remote sensing quality assessment.

Key words: reconstruction error, small sample, anomaly detection, diffusion model, convolutional auto-encoder

中图分类号: