测绘学报 ›› 2026, Vol. 55 ›› Issue (1): 101-113.doi: 10.11947/j.AGCS.2026.20250303

• 摄影测量学与遥感 • 上一篇    

一种双编码器自适应特征融合的SAR图像水体分割网络

韩斌1(), 黄欣1, 李丰毅1, 卢晓珍2()   

  1. 1.南京邮电大学通信与信息工程学院,江苏 南京 210003
    2.南京航空航天大学计算机科学与技术学院,江苏 南京 211106
  • 收稿日期:2025-07-28 修回日期:2026-01-04 发布日期:2026-02-13
  • 通讯作者: 卢晓珍 E-mail:njupt.bh@foxmail.com;luxiaozhen@nuaa.edu.cn
  • 作者简介:韩斌(1990—),男,博士,副教授,研究方向为遥感图像处理。E-mail:njupt.bh@foxmail.com
  • 基金资助:
    国家自然科学基金(62201281; 62571240; U22B2062);江苏省自然科学基金(BK20220392);南京邮电大学引进人才自然科学研究启动基金(NY222004)

Water body segmentation network for SAR images combining dual-encoder and adaptive feature fuse

Bin HAN1(), Xin HUANG1, Fengyi LI1, Xiaozhen LU2()   

  1. 1.School of Communication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
    2.School of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
  • Received:2025-07-28 Revised:2026-01-04 Published:2026-02-13
  • Contact: Xiaozhen LU E-mail:njupt.bh@foxmail.com;luxiaozhen@nuaa.edu.cn
  • About author:HAN Bin (1990—), male, PhD, associate professor, majors in remote sensing image processing. E-mail: njupt.bh@foxmail.com
  • Supported by:
    The National Natural Science Foundation of China(62201281; 62571240; U22B2062);The Natural Science Foundation of Jiangsu Province(BK20220392);The Natural Science Research Initiation Fund for Talents Introduced to Nanjing University of Posts and Telecommunications(NY222004)

摘要:

合成孔径雷达(SAR)图像水体分割广泛应用于灾害响应、水资源管理和环境监测等关键领域,具有重要现实意义。本文针对复杂背景SAR图像水体分割精度不高的问题,提出了一种双编码器自适应特征融合网络(dual-encoder adaptive feature fuse network,DEAFFNet)来实现准确的水体分割。该模型采用轻量化残差网络与Swin Transformer构建双编码器结构,协同提取局部细节信息与全局上下文信息,以改善复杂背景下信息表征能力不足的问题。在此基础上,设计了基于交叉注意力和自适应权重学习的特征融合模块,利用交叉注意力进行局部和全局信息的交互并通过自适应权重学习实现混合特征融合,以提高模型对水体结构的感知能力。在解码部分,解码器中集成多尺度卷积池化模块强化多尺度上下文信息,并结合轻量化的内容感知上采样方法来缓解上采样导致的特征失真问题。训练时,采用融合焦点损失和主动轮廓损失的复合损失函数,增强模型对样本平衡和水体边界信息的约束。在ALOS PALSAR和Sen1-SAR数据集上进行了水体分割试验,结果表明,DEAFFNet在多项评价指标上优于现有方法,能实现更加准确的水体分割结果。

关键词: SAR图像水体分割, 双编码器, 交叉注意力, 自适应权重学习, 复合损失

Abstract:

Synthetic aperture radar (SAR) image water body segmentation is widely applied in critical fields such as disaster response, water resource management, and environmental monitoring, holding significant practical importance. To address the issue of low segmentation accuracy for water bodies in complex-background SAR images, a dual-encoder adaptive feature fusion network (DEAFFNet) is proposed to achieve accurate water body segmentation. First, the model employs a lightweight residual network and Swin Transformer to construct a dual-encoder architecture, collaboratively extracting local detail information and global contextual information to mitigate the problem of insufficient information representation capability in complex backgrounds. Second, a feature fusion module based on cross-attention and adaptive weight learning is designed. This module utilizes cross-attention for interaction between local and global information and achieves hybrid feature fusion through adaptive weight learning, thereby enhancing the model's perception of water body structures. Then, a multi-scale convolutional pooling module is integrated into the decoder to reinforce multi-scale contextual information, combined with a lightweight content-aware upsampling method to alleviate feature distortion caused by upsampling. Finally, a composite loss function combining focal loss and active contour loss is adopted to strengthen the model's constraints on sample balance and water body boundary information. Water body segmentation experiments conducted on the ALOS PALSAR and Sen-1SAR datasets demonstrate that DEAFFNet outperforms existing methods across multiple evaluation metrics, achieving more accurate water body segmentation.

Key words: SAR image water body segmentation, dual-encoder, cross attention, adaptive weight learning, composite loss

中图分类号: