
测绘学报 ›› 2026, Vol. 55 ›› Issue (1): 101-113.doi: 10.11947/j.AGCS.2026.20250303
• 摄影测量学与遥感 • 上一篇
收稿日期:2025-07-28
修回日期:2026-01-04
发布日期:2026-02-13
通讯作者:
卢晓珍
E-mail:njupt.bh@foxmail.com;luxiaozhen@nuaa.edu.cn
作者简介:韩斌(1990—),男,博士,副教授,研究方向为遥感图像处理。E-mail:njupt.bh@foxmail.com
基金资助:
Bin HAN1(
), Xin HUANG1, Fengyi LI1, Xiaozhen LU2(
)
Received:2025-07-28
Revised:2026-01-04
Published:2026-02-13
Contact:
Xiaozhen LU
E-mail:njupt.bh@foxmail.com;luxiaozhen@nuaa.edu.cn
About author:HAN Bin (1990—), male, PhD, associate professor, majors in remote sensing image processing. E-mail: njupt.bh@foxmail.com
Supported by:摘要:
合成孔径雷达(SAR)图像水体分割广泛应用于灾害响应、水资源管理和环境监测等关键领域,具有重要现实意义。本文针对复杂背景SAR图像水体分割精度不高的问题,提出了一种双编码器自适应特征融合网络(dual-encoder adaptive feature fuse network,DEAFFNet)来实现准确的水体分割。该模型采用轻量化残差网络与Swin Transformer构建双编码器结构,协同提取局部细节信息与全局上下文信息,以改善复杂背景下信息表征能力不足的问题。在此基础上,设计了基于交叉注意力和自适应权重学习的特征融合模块,利用交叉注意力进行局部和全局信息的交互并通过自适应权重学习实现混合特征融合,以提高模型对水体结构的感知能力。在解码部分,解码器中集成多尺度卷积池化模块强化多尺度上下文信息,并结合轻量化的内容感知上采样方法来缓解上采样导致的特征失真问题。训练时,采用融合焦点损失和主动轮廓损失的复合损失函数,增强模型对样本平衡和水体边界信息的约束。在ALOS PALSAR和Sen1-SAR数据集上进行了水体分割试验,结果表明,DEAFFNet在多项评价指标上优于现有方法,能实现更加准确的水体分割结果。
中图分类号:
韩斌, 黄欣, 李丰毅, 卢晓珍. 一种双编码器自适应特征融合的SAR图像水体分割网络[J]. 测绘学报, 2026, 55(1): 101-113.
Bin HAN, Xin HUANG, Fengyi LI, Xiaozhen LU. Water body segmentation network for SAR images combining dual-encoder and adaptive feature fuse[J]. Acta Geodaetica et Cartographica Sinica, 2026, 55(1): 101-113.
表1
SAR图像水体检测结果的定量评价分析"
| 模型 | 数据集 | IoU | mIoU | POA | Kappa |
|---|---|---|---|---|---|
| UNet | ALOS PALSAR | 89.81 | 71.19 | 93.45 | 68.89 |
| Sen1-SAR | 68.43 | 68.35 | 78.62 | 68.21 | |
| ResUNet | ALOS PALSAR | 91.37 | 72.37 | 94.07 | 71.76 |
| Sen1-SAR | 73.24 | 71.61 | 81.21 | 70.25 | |
| SwinUNet | ALOS PALSAR | 92.57 | 79.08 | 94.74 | 78.36 |
| Sen1-SAR | 76.78 | 77.13 | 83.25 | 76.45 | |
| WaterFormer | ALOS PALSAR | 93.42 | 74.29 | 94.64 | 72.01 |
| Sen1-SAR | 85.11 | 84.52 | 91.47 | 83.57 | |
| DSHNet | ALOS PALSAR | 93.82 | 83.28 | 94.97 | 85.22 |
| Sen1-SAR | 84.35 | 83.21 | 90.56 | 82.56 | |
| MAFUNet | ALOS PALSAR | 94.28 | 84.75 | 97.23 | 86.81 |
| Sen1-SAR | 91.28 | 86.43 | 92.32 | 84.98 | |
| LEFormer | ALOS PALSAR | 93.98 | 84.37 | 96.43 | 85.92 |
| Sen1-SAR | 90.76 | 85.45 | 91.47 | 84.54 | |
| QTU-Net | ALOS PALSAR | 94.13 | 85.02 | 96.91 | 86.43 |
| Sen1-SAR | 90.97 | 86.21 | 91.83 | 84.72 | |
| DEAFFNet | ALOS PALSAR | 95.67 | 86.17 | 97.89 | 89.96 |
| Sen1-SAR | 92.26 | 88.71 | 93.67 | 87.09 |
| [1] |
刘帅, 李笑迎, 于梦, 等. 高分辨率遥感图像双解耦语义分割网络模型[J]. 测绘学报, 2023, 52(4): 638-647. DOI: .
doi: 10.11947/j.AGCS.2023.20210455 |
|
LIU Shuai, LI Xiaoying, YU Meng, et al. Dual decoupling semantic segmentation model for high-resolution remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(4): 638-647. DOI: .
doi: 10.11947/j.AGCS.2023.20210455 |
|
| [2] |
董子博, 王竞雪, 卜丽静, 等. MAFNet:基于多尺度空洞融合网络的遥感影像建筑物提取方法[J]. 测绘学报, 2025, 54(6): 1094-1106. DOI: .
doi: 10.11947/j.AGCS.2025.20240439 |
|
DONG Zibo, WANG Jingxue, BU Lijing, et al. MAFNet: building extraction method from remote sensing images based on multi-scale atrous fusion network[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(6): 1094-1106. DOI: .
doi: 10.11947/j.AGCS.2025.20240439 |
|
| [3] | PULVIRENTI L, PIERDICCA N, CHINI M, et al. An algorithm for operational flood mapping from synthetic aperture radar (SAR) data using fuzzy logic[J]. Natural Hazards and Earth System Sciences, 2011, 11(2): 529-540. |
| [4] | QIN Xingli, YANG Jie, LI Pingxiang, et al. Research on water body extraction from Gaofen-3 imagery based on polarimetric decomposition and machine learning[C]//Proceedings of 2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama: IEEE, 2019: 6903-6906. |
| [5] | GASNIER N, DENIS L, FJØRTOFT R, et al. Narrow river extraction from SAR images using exogenous information[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 5720-5734. |
| [6] | ZHANG Tianyi, JI Wenbo, LI Weibin, et al. EDWNet: a novel encoder-decoder architecture network for water body extraction from optical images[J]. Remote Sensing, 2024, 16(22): 4275. |
| [7] | WANG Jing, JIA Dongmei, XUE Jiaxing, et al. Automatic water body extraction from SAR images based on MADF-Net[J]. Remote Sensing, 2024, 16(18): 3419. |
| [8] | WENG Zhi, LI Qiyan, ZHENG Zhiqiang, et al. SCR-Net: a dual-channel water body extraction model based on multi-spectral remote sensing imagery: a case study of Daihai Lake, China[J]. Sensors, 2025, 25(3): 763. |
| [9] | YUAN Da, WANG Chao, WU Lin, et al. Water stream extraction via feature-fused encoder-decoder network based on SAR images[J]. Remote Sensing, 2023, 15(6): 1559. |
| [10] | NI Hao, LI Jianfeng, WANG Chenxu, et al. SDNet: sandwich decoder network for waterbody segmentation in remote sensing imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025, 18: 13895-13911. |
| [11] | WANG Jingming, WANG Shixin, WANG Futao, et al. FWENet: a deep convolutional neural network for flood water body extraction based on SAR images[J]. International Journal of Digital Earth, 2022, 15(1): 345-361. |
| [12] | WANG Zhen, YOU Zhuhong, XU Nan, et al. UAVSeg: dual-encoder cross-scale attention network for UAV images'semantic segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5600117. |
| [13] | YU Mouzhe, HE Liheng, SHEN Zhehui, et al. STRD-net: a dual-encoder semantic segmentation network for urban green space extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 4413913. |
| [14] | LIU Ye, SONG Shitao, WANG Miaohui, et al. DE-Unet: dual-encoder U-Net for ultra-high resolution remote sensing image segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025, 18: 12290-12302. |
| [15] | FU Yujia, ZHANG Xiangrong, WANG Mingyang. DSHNet: a semantic segmentation model of remote sensing images based on dual stream hybrid network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 4164-4175. |
| [16] | KANG Jian, GUAN Haiyan, MA Lingfei, et al. WaterFormer: a coupled transformer and CNN network for waterbody detection in optical remotely-sensed imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 206: 222-241. |
| [17] | LI Y, ZHANG Y, WANG Z, et al. LEFormer: Lake extraction from remote sensing imagery using a dual-encoder transformer network[C]//Proceedings of 2023 IEEE/CVF International Conference on Computer Vision. VANCOUVER: IEEE, 2023: 10693-10702. |
| [18] | LI Yansheng, CHEN Wei, HUANG Xin, et al. MFVNet: a deep adaptive fusion network with multiple field-of-views for remote sensing image semantic segmentation[J]. Science China Information Sciences, 2023, 66(4): 140305. |
| [19] | WU Kang, ZHANG Yingying, RU Lixiang, et al. A semantic-enhanced multi-modal remote sensing foundation model for Earth observation[J]. Nature Machine Intelligence, 2025, 7(8): 1235-1249. |
| [20] | HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778. |
| [21] | LIU Ze, LIN Yutong, CAO Yue, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2022: 9992-10002. |
| [22] | CHEN C R, FAN Quanfu, PANDA R. CrossViT: cross-attention multi-scale vision transformer for image classification[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2022: 347-356. |
| [23] | WANG Jiaqi, CHEN Kai, XU Rui, et al. CARAFE: content-aware reassembly of features[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 3007-3016. |
| [24] | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2999-3007. |
| [25] | PHAM V T, TRAN T T, WANG Pachun, et al. Tympanic membrane segmentation in otoscopic images based on fully convolutional network with active contour loss[J]. Signal, Image and Video Processing, 2021, 15(3): 519-527. |
| [26] | GU Jia, FANG Zhijun, GAO Yongbin, et al. Segmentation of coronary arteries images using global feature embedded network with active contour loss[J]. Computerized Medical Imaging and Graphics, 2020, 86: 101799. |
| [27] | CHICCHON M, COLOSI F, MALINVERNI E S, et al. Urban sprawl monitoring by VHR images using active contour loss and improved U-Net with mix transformer encoders[J]. Remote Sensing, 2025, 17(9): 1593. |
| [28] | CHEN Bo, JI Jing, LI Junwei, et al. An adaptive weighted active contour based HRNet for underwater image segmentation[J]. Pattern Recognition, 2026, 172: 112368. |
| [29] | CHICCHON M, TRUJILLO F J L, SIPIRAN I, et al. Land-cover semantic segmentation for very-high-resolution remote sensing imagery using deep transfer learning and active contour loss[J]. IEEE Access, 2025, 13: 59007-59019. |
| [30] | DIAKOGIANNIS F I, WALDNER F, CACCETTA P, et al. ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 162: 94-114. |
| [31] | CAO Hu, WANG Yueyue, CHEN J, et al. Swin-unet: unet-like pure transformer for medical image segmentation[EB/OL]. [2025-10-05]. https://arxiv.org/abs/2105.05537. |
| [32] |
邢广澳, 卢官明, 韩斌. MAFUNet:结合注意力机制和主动轮廓损失的SAR图像水体分割算法[J]. 测绘学报, 2025, 54(5): 924-936. DOI: .
doi: 10.11947/j.AGCS.2025.20240235 |
|
XING Guang'ao, LU Guanming, HAN Bin. MAFUNet: water body segmentation algorithm for SAR images combining attention mechanisms and active contour loss[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 924-936. DOI: .
doi: 10.11947/j.AGCS.2025.20240235 |
|
| [33] | WANG Mingzhi, LI Chunshan, YANG Xiaofei, et al. QTU-Net: quaternion transformer-based U-Net for water body extraction of RGB satellite image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5634816. |
| [1] | 曹云刚, 杨鹏, 龚江波, 朱高, 沈星宇. 空间关系增强与异构特征融合相结合的道路信息提取方法[J]. 测绘学报, 2025, 54(12): 2219-2232. |
| [2] | 张津, 冯凡, 戴晨光, 张振超, 于英, 刘冰. 基于CNN-ViT混合特征优化的小样本高光谱图像分类[J]. 测绘学报, 2025, 54(12): 2233-2246. |
| [3] | 侯昭阳, 闫浩文, 张黎明, 马荣娟, 屈睿涛. 基于耦合神经P系统与区块链的遥感影像零水印版权保护方法[J]. 测绘学报, 2025, 54(12): 2247-2261. |
| [4] | 熊强. 基于空间结构特征的多模态遥感图像匹配方法研究[J]. 测绘学报, 2025, 54(12): 2288-2288. |
| [5] | 冯雨宁. 青藏高原多级气候分区研究[J]. 测绘学报, 2025, 54(12): 2293-2293. |
| [6] | 童小华, 黄荣, 曹佳瑞, 刘宸, 王蓉, 徐聿升, 叶真, 金雁敏, 刘世杰, 柳思聪, 冯永玖, 谢欢. 月球与近地行星三维形貌重建的智能方法综述:研究进展与未来挑战[J]. 测绘学报, 2025, 54(11): 1917-1933. |
| [7] | 武昊, 侯东阳, 张俊, 张平, 刘玉轩, 杜磊, 康路, 程滔, 陈军. 动态服务计算支持的自然资源遥感监测监管平台关键技术研究[J]. 测绘学报, 2025, 54(11): 1992-2008. |
| [8] | 龚希, 陈占龙, 郑恒强, 胡胜, 张洪艳. 融合迁移特征空间和语义信息的遥感影像场景分类方法[J]. 测绘学报, 2025, 54(11): 2009-2025. |
| [9] | 衣雪峰. 点云与影像融合的隧洞岩体结构信息自动提取方法研究[J]. 测绘学报, 2025, 54(11): 2098-2098. |
| [10] | 马开森. 地面激光雷达林分点云单木分离及参数提取研究[J]. 测绘学报, 2025, 54(11): 2100-2100. |
| [11] | 师悦龄. 基于SAR干涉和偏移量追踪估计的高山冰川冰湖动态演变监测及其关联特征分析[J]. 测绘学报, 2025, 54(11): 2103-2103. |
| [12] | 李康宁. 全球城市热岛遥感研究:时空特征、变化模式及驱动分析[J]. 测绘学报, 2025, 54(11): 2105-2105. |
| [13] | 黄鑫, 叶健, 刘骋冰, 曾秋雨, 郭万新, 郭志凯. 一种兼具精度与可解释性的Stacking-SHAP滑坡易发性预测集成方法[J]. 测绘学报, 2025, 54(10): 1826-1840. |
| [14] | 熊新, 靳国旺, 崔瑞兵, 李烁, 杨鹤. 利用秩自相似特征的光学和SAR图像快速匹配方法[J]. 测绘学报, 2025, 54(10): 1852-1862. |
| [15] | 张志力, 姜慧伟, 胡翔云. 面向极简交互的遥感地物精确批量提取框架[J]. 测绘学报, 2025, 54(10): 1863-1876. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||