测绘学报 ›› 2017, Vol. 46 ›› Issue (10): 1421-1433.doi: 10.11947/j.AGCS.2017.20170339
林珲1,2, 马培峰1,2,3, 王伟玺4
收稿日期:
2017-06-21
修回日期:
2017-09-11
出版日期:
2017-10-20
发布日期:
2017-10-26
通讯作者:
马培峰
E-mail:mapeifeng@cuhk.edu.hk
作者简介:
林珲(1954-),男,博士,教授,研究方向为地理信息科学。E-mail:huilin@cuhk.edu.hk
基金资助:
LIN Hui1,2, MA Peifeng1,2,3, WANG Weixi4
Received:
2017-06-21
Revised:
2017-09-11
Online:
2017-10-20
Published:
2017-10-26
Supported by:
摘要: 星载合成孔径雷达干涉测量(InSAR)技术是近年来迅猛发展的一种空间对地观测技术,在InSAR基础上提出的多时相InSAR(MT-InSAR)方法,利用同一地区的多景SAR影像对时序稳定点(PS)进行精确分析,极大地降低了大气延迟等带来的测量误差,使得形变监测精度达到了厘米级到毫米级,可对城市基础设施进行大范围高精度的连续监测。本文通过对MT-InSAR技术发展的综述,总结了目前MT-InSAR技术在基础设施健康监测方面的关键问题和应用领域,并对未来MT-InSAR在城市应用方面的发展提出了展望。
中图分类号:
林珲, 马培峰, 王伟玺. 监测城市基础设施健康的星载MT-InSAR方法介绍[J]. 测绘学报, 2017, 46(10): 1421-1433.
LIN Hui, MA Peifeng, WANG Weixi. Urban Infrastructure Health Monitoring with Spaceborne Multi-temporal Synthetic Aperture Radar Interferometry[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1421-1433.
[1] GOLDSTEIN R M, ZEBKER H A, WERNER C L. Satellite Radar Interferometry:Two-dimensional Phase Unwrapping[J]. Radio science, 1988, 23(4):713-720. [2] ZEBKER H A, GOLDSTEIN R M. Topographic Mapping from Interferometric Synthetic Aperture Radar Observations[J]. Journal of Geophysical Research:Solid Earth, 1986, 91(B5):4993-4999. [3] JARVIS A, REUTER H I, NELSON A, et al. Hole-filled SRTM for the Globe Version 4[EB/OL].[2017-04-15]. http://srtm.Csi.Cgiar.org. [4] GABRIEL A K, GOLDSTEIN R M, ZEBKER H A. Mapping Small Elevation Changes over Large Areas:Differential Radar Interferometry[J]. Journal of Geophysical Research:Solid Earth, 1989, 94(B7):9183-9191. [5] ZEBKER H A, VILLASENOR J. Decorrelation in Interferometric Radar Echoes[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5):950-959. [6] ZEBKER H A, ROSEN P A, HENSLEY S. Atmospheric Effects in Interferometric Synthetic Aperture Radar Surface Deformation and Topographic Maps[J]. Journal of Geophysical Research:Solid Earth, 1997, 102(B4):7547-7563. [7] DOIN M P, LASSERRE C, PELTZER G, et al. Corrections of Stratified Tropospheric Delays in SAR Interferometry:Validation with Global Atmospheric Models[J]. Journal of Applied Geophysics, 2009, 69(1):35-50. [8] LI Zhenhong, MULLER J P, CROSS P, et al. Interferometric Synthetic Aperture Radar (InSAR) Atmospheric Correction:GPS, Moderate Resolution Imaging Spectroradiometer (MODIS), and InSAR Integration[J]. Journal of Geophysical Research:Solid Earth, 2005, 110(B3):B03410. [9] NICO G, TOME R, CATALAO J, et al. On the Use of the WRF Model to Mitigate Tropospheric Phase Delay Effects in SAR Interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(12):4970-4976. [10] BAMLER R, HARTL P. Synthetic Aperture Radar Interferometry[J]. Inverse Problems, 1998, 14(4):R1-R54. [11] ROSEN P A, HENSLEY S, JOUGHIN I R, et al. Synthetic Aperture Radar Interferometry[J]. Proceedings of the IEEE, 2000, 88(3):333-382. [12] CROSETTO M, MONSERRAT O, CUEVAS-GONZÁLEZ M, et al. Persistent Scatterer Interferometry:A Review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 115:78-89. [13] FERRETTI A, SAVIO G, BARZAGHI R, et al. Submillimeter Accuracy of InSAR Time Series:Experimental Validation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(5):1142-1153. [14] SANDWELL D T, PRICE E J. Phase Gradient Approach to Stacking Interferograms[J]. Journal of Geophysical Research:Solid Earth, 1998, 103(B12):30183-30204. [15] FERRETTI A, PRATI C, ROCCA F. Permanent Scatterers in SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1):8-20. [16] FERRETTI A, PRATI C, ROCCA F. Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2202-2212. [17] BERARDINO P, FORNARO G, LANARI R, et al. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383. [18] WERNER C, WEGMULLER U, STROZZI T, et al. Interferometric Point Target Analysis for Deformation Mapping[C]//Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium. Toulouse, France:IEEE, 2003:4362-4364. [19] KAMPES B M. Radar Interferometry:Persistent Scatterer Technique[M]. Dordrecht, The Netherlands:Springer, 2006. [20] HOOPER A, ZEBKER H, SEGALL P, et al. A New Method for Measuring Deformation on Volcanoes and other Natural Terrains Using InSAR Persistent Scatterers[J]. Geophysical Research Letters, 2004, 31(23):L23611. [21] HOOPER A, SEGALL P, ZEBKER H. Persistent Scatterer Interferometric Synthetic Aperture Radar for Crustal Deformation Analysis, with Application to Volcán Alcedo, Galápagos[J]. Journal of Geophysical Research:Solid Earth, 2007, 112(B7):B07407. [22] COSTANTINI M, FALCO S, MALVAROSA F, et al. A New Method for Identification and Analysis of Persistent Scatterers in Series of SAR Images[C]//Proceedings of the IEEE International Geoscience and Remote Sensing Symposium. Boston, MA:IEEE, 2008:Ⅱ-449-Ⅱ-452. [23] FERRETTI A, FUMAGALLI A, NOVALI F, et al. A New Algorithm for Processing Interferometric Data-stacks:SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9):3460-3470. [24] PERISSIN D, WANG Teng. Repeat-pass SAR Interferometry With Partially Coherent Targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1):271-280. [25] VAN LEIJEN F J. Persistent Scatterer Interferometry Based on Geodetic Estimation Theory[D]. Delft:Delft University of Technology, 2014. [26] ZHU Xiaoxiang, BAMLER R. Super-Resolution Power and Robustness of Compressive Sensing for Spectral Estimation with Application to Spaceborne Tomographic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(1):247-258. [27] MA Peifeng, LIN Hui. Robust Detection of Single and Double Persistent Scatterers in Urban Built Environments[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4):2124-2139. [28] YE Xia, KAUFMANN H, GUO X F. Landslide Monitoring in the Three Gorges Area Using D-InSAR and Corner Reflectors[J]. Photogrammetric Engineering & Remote Sensing, 2004, 70(10):1167-1172. [29] HOOPER A, SEGALL P, ZEBKER H. Persistent Scatterer Interferometric Synthetic Aperture Radar for Crustal Deformation Analysis, WITH Application to Volcán Alcedo, Galápagos[J]. Journal of Geophysical Research:Solid Earth, 2007, 112(B7):B07407. [30] GOEL K, ADAM N. A Distributed Scatterer Interferometry Approach for Precision Monitoring of Known Surface Deformation Phenomena[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(9):5454-5468. [31] FORNARO G, VERDE S, REALE D, et al. CAESAR:An Approach Based on Covariance Matrix Decomposition to Improve Multibaseline-Multitemporal Interferometric SAR Processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4):2050-2065. [32] WANG Yuanyuan, ZHU Xiaoxiang, BAMLER R. Retrieval of Phase History Parameters from Distributed Scatterers in Urban Areas Using Very High Resolution SAR Data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 73:89-99. [33] GERNHARDT S, ADAM N, EINEDER M, et al. Potential of Very High Resolution SAR for Persistent Scatterer Interferometry in Urban Areas[J]. Annals of GIS, 2010, 16(2):103-111. [34] LOMBARDINI F. Differential Tomography:A New Framework for SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(1):37-44. [35] ZHU Xiaoxiang, BAMLER R. Very High Resolution Spaceborne SAR Tomography in Urban Environment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12):4296-4308. [36] ZHU Xiaoxiang, BAMLER R. Tomographic SAR Inversion by L1-Norm Regularization-The Compressive Sensing Approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(10):3839-3846. [37] LANARI R, MORA O, MANUNTA M, et al. A Small-baseline Approach for Investigating Deformations on Full-resolution Differential SAR Interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7):1377-1386. [38] MORA O, MALLORQUI J J, BROQUETAS A. Linear and Nonlinear Terrain Deformation Maps from a Reduced Set of Interferometric SAR Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(10):2243-2253. [39] ZHANG Lei, DING Xiaoli, LU Zhong. Modeling PSInSAR Time Series without Phase Unwrapping[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1):547-556. [40] DEVANTHÉRY N, CROSETTO M, MONSERRAT O, et al. An Approach to Persistent Scatterer Interferometry[J]. Remote Sensing, 2014, 6(7):6662-6679. [41] 李德仁, 廖明生, 王艳. 永久散射体雷达干涉测量技术[J]. 武汉大学学报(信息科学版), 2004, 29(8):664-668. LI Deren, LIAO Mingsheng, WANG Yan. Progress of Permanent Scatterer Interferometry[J]. Geomatics and Information Science of Wuhan University, 2004, 29(8):664-668. [42] 汤益先, 张红, 王超. 基于永久散射体雷达干涉测量的苏州地区沉降研究[J]. 自然科学进展, 2006, 16(8):1015-1020. TANG Yixian, ZHANG Hong, WANG Chao, Study on Settlement of Suzhou Area Based on Permanent Scatterer Interferometry[J]. Progress in Natural Science, 2006, 16(8):1015-1020. [43] LIU Guoxiang, LUO Xiaojun, CHEN Qiang, et al. Detecting Land Subsidence in Shanghai by PS-Networking SAR Interferometry[J]. Sensors, 2008, 8(8):4725-4741. [44] 葛大庆, 郭小方, 张玲. 华北平原地面沉降区InSAR监测[R]. 北京:中国国土资源航空物探遥感中心, 2010. GE Daqing, GUO Xiaofang, ZHANG Ling. InSAR Monitoring of Ground Subsidence Area in North China Plain[R]. Beijing:China Aero Geophysical Surveying and Remote Sensing Center for Land and Resources, 2010. [45] 张永红, 吴宏安, 孙广通. 时间序列InSAR技术中的形变模型研究[J]. 测绘学报, 2012, 41(6):864-869, 876. ZHANG Yonghong, WU Hongan, SUN Guangtong. Deformation Model of Time Series Interferometric SAR Techniques[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(6):864-869, 876. [46] CHEN Fulong, LIN Hui, LI Zhen, et al. Interaction between Permafrost and Infrastructure along the Qinghai-Tibet Railway Detected via Jointly Analysis of C-and L-band Small Baseline SAR Interferometry[J]. Remote Sensing of Environment, 2012, 123:532-540. [47] JIANG Liming, LIN Hui, MA Jianwei, et al. Potential of Small-Baseline SAR Interferometry for Monitoring Land Subsidence Related to Underground Coal Fires:Wuda (Northern China) Case Study[J]. Remote Sensing of Environment, 2011, 115(2):257-268. [48] IANNINI L, GUARNIERI A M. Atmospheric Phase Screen in Ground-based Radar:Statistics and Compensation[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3):537-541. [49] HANSSEN R F. Radar Interferometry:Data Interpretation and Error Analysis[M]. Netherlands:Springer, 2001. [50] HANSSEN R F, WECKWERTH T M, ZEBKER H A, et al. High-resolution Water Vapor Mapping from Interferometric Radar Measurements[J]. Science, 1999, 283(5406):1297-1299. [51] PUYSSÉGUR B, MICHEL R, AVOUAC J P. Tropospheric Phase Delay in Interferometric Synthetic Aperture Radar Estimated from Meteorological Model and Multispectral Imagery[J]. Journal of Geophysical Research:Solid Earth, 2007, 112(B5):B05419. [52] CHAABANE F, AVALLONE A, TUPIN F, et al. A Multitemporal Method for Correction of Tropospheric Effects in Differential SAR Interferometry:Application to the Gulf of Corinth Earthquake[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(6):1605-1615. [53] ROCCA F, PRATI C, FERRETTI A. Space-borne SARs:Impact of Wavelengths and Scan Modes on Ground Motion Studies[J]. Annals of GIS, 2010, 16(2):69-79. [54] IGLESIAS R, MALLORQUI J J. Side-lobe Cancelation in DInSAR Pixel Selection with SVA[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4):667-671. [55] LAUKNES T R, ZEBKER H A, LARSEN Y. InSAR Deformation Time Series Using An L1-norm Small-Baseline Approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1):536-546. [56] COLESANTI C, FERRETTI A, NOVALI F, et al. SAR Monitoring of Progressive and Seasonal Ground Deformation Using The Permanent Scatterers Technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(7):1685-1701. [57] KIM S W, WDOWINSKI S, DIXON T H, et al. Measurements and Predictions of Subsidence Induced by Soil Consolidation Using Persistent Scatterer InSAR and a Hyperbolic Model[J]. Geophysical Research Letters, 2010, 37(5):L05304. [58] MA Peifeng, LIN Hui, LAN Hengxing, et al. Multi-dimensional SAR Tomography for Monitoring the Deformation of Newly Built Concrete Buildings[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 106:118-128. [59] MONSERRAT O, CROSETTO M, CUEVAS M, et al. The Thermal Expansion Component of Persistent Scatterer Interferometry Observations[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(5):864-868. [60] REFICE A, SATALINO G, STRAMAGLIA S, et al. Weights Determination for Minimum Cost Flow InSAR Phase Unwrapping[C]//Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium. Hamburg:IEEE, 1999, 2:1342-1344. [61] GUTMANN B, WEBER H. Phase Unwrapping with the Branch-cut Method:Role of Phase-field Direction[J]. Applied Optics, 2000, 39(26):4802-4816. [62] GOEL K, ADAM N. An Advanced Algorithm for Deformation Estimation in Non-urban Areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 73:100-110. [63] PARIZZI A, BRCIC R. Adaptive InSAR Stack Multilooking Exploiting Amplitude Statistics:A Comparison between Different Techniques and Practical Results[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3):441-445. [64] REIGBER A, MOREIRA A. First Demonstration of Airborne SAR Tomography Using Multibaseline L-Band Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2142-2152. [65] FORNARO G, REALE D, SERAFINO F. Four-Dimensional SAR Imaging for Height Estimation and Monitoring of Single and Double Scatterers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(1):224-237. [66] GINI F, LOMBARDINI F, MONTANARI M. Layover Solution in Multibaseline SAR Interferometry[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(4):1344-1356. [67] ZHU Xiaoxiang, MONTAZERI S, GISINGER C, et al. Geodetic SAR Tomography[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1):18-35. [68] MA Peifeng, LIN Hui, LAN Hengxing, et al. On the Performance of Reweighted L1 Minimization for Tomographic SAR Imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(4):895-899. [69] AUER S, GERNHARDT S, BAMLER R. Investigations on the Nature of Persistent Scatterers Based on Simulation Methods[C]//Proceedings of the 2011 Joint Urban Remote Sensing Event (JURSE). Munich:IEEE, 2011:61-64. [70] WANG Yuanyuan, ZHU Xiaoxiang, ZEISL B, et al. Fusing Meter-resolution 4D InSAR Point Clouds and Optical Images for Semantic Urban Infrastructure Monitoring[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(1):14-26. [71] LIU Guoxiang, JIA Hongguo, NIE Yunju, et al. Detecting Subsidence in Coastal Areas by Ultrashort-baseline TCPInSAR on the Time Series of High-resolution TerraSAR-X Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(4):1911-1923. [72] MICHEL R, AVOUAC J P, TABOURY J. Measuring Ground Displacements from SAR Amplitude Images:Application to the Landers Earthquake[J]. Geophysical Research Letters, 1999, 26(7):875-878. [73] BECHOR N B D, ZEBKER H A. Measuring Two-dimensional Movements Using a Single InSAR Pair[J]. Geophysical Research Letters, 2006, 33(16):L16311. [74] CROSETTO M, MONSERRAT O, CUEVAS-GONZÁLEZ M, et al. Measuring Thermal Expansion Using X-band Persistent Scatterer Interferometry[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 100:84-91. [75] 秦晓琼, 杨梦诗, 王寒梅, 等. 高分辨率PS-InSAR在轨道交通形变特征探测中的应用[J]. 测绘学报, 2016, 45(6):713-721. DOI:10.11947/j.AGCS.2016.20150440. QIN Xiaoqiong, YANG Mengshi, WANG Hanmei, et al. Application of High-resolution PS-InSAR in Deformation Characteristics Probe of Urban Rail Transit[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(6):713-721. DOI:10.11947/j.AGCS.2016.20150440. [76] HU J, LI Z W, DING X L, et al. Resolving Three-dimensional Surface Displacements from InSAR Measurements:A Review[J]. Earth-Science Reviews, 2014, 133:1-17. [77] COLOMBO D, TRE E. Measuring Deformation from Space. InSAR as An Operational Tool for Mining Sector[C]//SASGI Proceedings 2013.[S.l.]:[s.n.], 2013. [78] PERISSIN D, WANG Zhiying, LIN Hui. Shanghai Subway Tunnels and Highways Monitoring through Cosmo-SkyMed Persistent Scatterers[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 73:58-67. [79] BARLA G, TAMBURINI A, DEL CONTE S, et al. InSAR Monitoring of Tunnel Induced Ground Movements[J]. Geomechanics and Tunnelling, 2016, 9(1):15-22. [80] JIANG Liming, LIN Hui. Integrated Analysis of SAR Interferometric and Geological Data for Investigating Long-Term Reclamation Settlement of Chek Lap Kok Airport, Hong Kong[J]. Engineering Geology, 2010, 110(3-4):77-92. [81] ZHAO Qing, LIN Hui, GAO Wei, et al. InSAR Detection of Residual Settlement of an Ocean Reclamation Engineering Project:A Case Study of Hong Kong International Airport[J]. Journal of Oceanography, 2011, 67(4):415-426. [82] BELL J W, AMELUNG F, FERRETTI A, et al. Permanent Scatterer InSAR Reveals Seasonal and Long-Term Aquifer-System Response to Groundwater Pumping and Artificial Recharge[J]. Water Resources Research, 2008, 44(2):W02407. [83] CHEN Mi, TOMÁS R, LI Zhenhong, et al. Imaging Land Subsidence Induced by Groundwater Extraction in Beijing (China) Using Satellite Radar Interferometry[J]. Remote Sensing, 2016, 8(6):468. [84] 葛大庆, 殷跃平, 王艳, 等. 地面沉降-回弹及地下水位波动的InSAR长时序监测——以德州市为例[J]. 国土资源遥感, 2014, 26(1):103-109. GE Daqing, YIN Yueping, WANG Yan, et al. Seasonal Subsidence-Rebound and Ground Water Level Changes Monitoring by Using Coherent Target InSAR Technique:A Case Study of Dezhou, Shandong[J]. Remote Sensing for Land & Resources, 2014, 26(1):103-109. [85] 刘广, 郭华东, HANSSEN R, 等. InSAR技术在矿区沉降监测中的应用研究[J]. 国土资源遥感, 2008, 20(2):51-55. LIU Guang, GUO Huadong, HANSSEN R, et al. The Application of InSAR Technology to Mining Area Subsidence Monitoring[J]. Remote Sensing for Land & Resources, 2008, 20(2):51-55. [86] HILLEY G E, BVRGMANN R, FERRETTI A, et al. Dynamics of Slow-moving Landslides from Permanent Scatterer Analysis[J]. Science, 2004, 304(5679):1952-1955. [87] CHEN Fulong, LIN Hui, HU Xianzhi. Slope Superficial Displacement Monitoring by Small Baseline SAR Interferometry Using Data from L-band ALOS PALSAR and X-band TerraSAR:A Case Study of Hong Kong, China[J]. Remote Sensing, 2014, 6(2):1564-1586. [88] AKBARIMEHR M, MOTAGH M, HAGHSHENAS-HAGHIGHI M. Slope Stability Assessment of the Sarcheshmeh Landslide, Northeast Iran, Investigated Using InSAR and GPS Observations[J]. Remote Sensing, 2013, 5(8):3681-3700. |
[1] | 何秀凤, 高壮, 肖儒雅, 罗海滨, 贾东振, 章浙涛. InSAR与北斗/GNSS综合方法监测地表形变研究现状与展望[J]. 测绘学报, 2022, 51(7): 1338-1355. |
[2] | 朱建军, 付海强, 汪长城. 极化干涉SAR地表覆盖层“穿透测绘”技术进展[J]. 测绘学报, 2022, 51(6): 983-995. |
[3] | 姚树一, 张燕海, 杨可明, 石晓宇, 王剑. 注浆采区地表形变时空演化SMD-InSAR监测分析法[J]. 测绘学报, 2020, 49(7): 893-906. |
[4] | 郭山川, 张绍良, 侯湖平, 朱前林, 刘润. 基于临时相干目标监测非城区地表形变[J]. 测绘学报, 2019, 48(1): 106-116. |
[5] | 吴文豪, 周志伟, 李陶, 龙四春. 精密轨道支持下的哨兵卫星TOPS模式干涉处理[J]. 测绘学报, 2017, 46(9): 1156-1164. |
[6] | 熊新, 靳国旺, 张红敏, 徐青. 方差分量估计在机载InSAR区域网平差中的应用[J]. 测绘学报, 2016, 45(5): 592-600. |
[7] | 邓琳, 刘国祥, 张瑞, 王晓文, 于冰, 唐嘉, 张亨. 多平台MC-SBAS长时序建模与形变提取方法[J]. 测绘学报, 2016, 45(2): 213-223. |
[8] | 吴宏安, 张永红, 康永辉, 郭明. 一种面向时间序列InSAR的不连通子网快速连接方法[J]. 测绘学报, 2016, 45(10): 1192-1199. |
[9] | 邢学敏. CRInSAR与PSInSAR联合监测矿区时序地表形变研究[J]. 测绘学报, 2014, 43(8): 878-878. |
[10] | 费文波 张过 唐新明 李德仁 高小明. 基于有理多项式模型的星载高分InSAR影像制作数字高程模型的研究[J]. 测绘学报, 2014, 43(1): 83-88. |
[11] | 龙四春,张诗玉,冯涛,李黎. 公用主影像干涉图加权叠加方法及其在地面沉降监测中的应用[J]. 测绘学报, 2012, 41(6): 844-850. |
[12] | 张永红,吴宏安,孙广通. 时间序列InSAR技术中的形变模型研究[J]. 测绘学报, 2012, 41(6): 864-869. |
[13] | 靳国旺,张红敏,徐青,秦志远,,施全杰. 多波段InSAR差分滤波相位解缠方法[J]. 测绘学报, 2012, 41(3): 0-416. |
[14] | 陶秋香,刘国林. 永久散射体差分干涉测量技术中SAR影像精配准的一种新方法[J]. 测绘学报, 2012, 41(1): 69-0. |
[15] | 张红敏,靳国旺,徐青. 中国余数定理在双基线InSAR相位解缠中的应用[J]. 测绘学报, 2011, 40(6): 770-777. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||