测绘学报 ›› 2017, Vol. 46 ›› Issue (10): 1717-1733.doi: 10.11947/j.AGCS.2017.20170350
朱建军, 李志伟, 胡俊
收稿日期:
2017-06-26
修回日期:
2017-09-13
出版日期:
2017-10-20
发布日期:
2017-10-26
作者简介:
朱建军(1962-),男,教授,博士生导师,研究方向为测量平差与InSAR数据处理。E-mail:zjj@mail.csu.edu.cn
基金资助:
ZHU Jianjun, LI Zhiwei, HU Jun
Received:
2017-06-26
Revised:
2017-09-13
Online:
2017-10-20
Published:
2017-10-26
Supported by:
摘要: 变形监测是星载InSAR技术应用最为成熟的领域之一。本文首先介绍了InSAR变形监测的基本原理和卫星数据来源;然后对InSAR变形监测方法进行了系统性的分类,分析了D-InSAR、PS-InSAR、SBAS-InSAR、DS-InSAR和MAI等方法的技术特点和适用范围;进而从应用的角度分析了InSAR技术在城市、矿山、地震、火山、基础设施、冰川、冻土和滑坡等领域的研究现状和不足之处;最后总结出InSAR变形监测在多维形变和低相干区测量、大气和轨道误差去除和精度评定等方面的前沿问题。
中图分类号:
朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10): 1717-1733.
ZHU Jianjun, LI Zhiwei, HU Jun. Research Progress and Methods of InSAR for Deformation Monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1717-1733.
[1] ZEBKER H A, GOLDSTEIN R M. Topographic Mapping from Interferometric Synthetic Aperture Radar Observations[J]. Journal of Geophysical Research:Solid Earth, 1986, 91(B5):4993-4999. [2] GABRIEL A K, GOLDSTEIN R M, ZEBKER H A. Mapping Small Elevation Changes over Large Areas:Differential Radar Interferometry[J]. Journal of Geophysical Research:Solid Earth, 1989, 94(B7):9183-9191. [3] ZEBKER H A, VILLASENOR J. Decorrelation in Interferometric Radar Echoes[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5):950-959. [4] HANSSEN R F. Radar Interferometry:Data Interpretation and Error Analysis[M]. Netherlands:Springer, 2001. [5] GALLOWAY D L, HUDNUT K W, INGEBRITSEN S E, et al. Detection of Aquifer System Compaction and Land Subsidence Using Interferometric Synthetic Aperture Radar, Antelope Valley, Mojave Desert, California[J]. Water Resources Research, 1998, 34(10):2573-2585. [6] LIU Shizhuo, HANSSEN R F, MIKA Á. Feasibility of Retrieving Spatial Variations of Atmospheric Phase Screen at Epochs of SAR Acquisitions from SAR Interferometry[C]//Sixth International Workshop on ERS/Envisat SAR Interferometry. Frascati, Italy:[s.n.], 2009:5. [7] COSTANTINI M, ROSEN P A. A Generalized Phase Unwrapping Approach for Sparse Data[C]//Proceedings of IEEE 1999 International Geoscience and Remote Sensing Symposium. Hamburg:IEEE, 1999, 1:267-269. [8] GOLDSTEIN R M, WERNER C L. Radar Interferogram Filtering for Geophysical Applications[J]. Geophysical Research Letters, 1998, 25(21):4035-4038. [9] LI Zhiwei, DING Xiaoli, ZHENG Dawei, et al. Least Squares-Based Filter for Remote Sensingimage Noise Reduction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(7):2044-2049. [10] XU Bing, LI Zhiwei, WANG Qijie, et al. A Refined Strategy for Removing Composite Errors of SAR Interferogram[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1):143-147. [11] JIANG Mi, DING Xiaoli, LI Zhiwei, et al. InSAR Coherence Estimation for Small Data Sets and Its Impact on Temporal Decorrelation Extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10):6584-6596. [12] FENG Guangcai, JÓNSSON S, KLINGER Y. Which Fault Segments Ruptured in the 2008 Wenchuan Earthquake and Which Did Not? New Evidence from Near-fault 3D Surface Displacements Derived from SAR Image Offsets[J]. Bulletin of the Seismological Society of America, 2017, 107(3). DOI:10.1785/0120160126. [13] FERRETTI A, PRATI C, ROCCA F. Nonlinear Subsidence Rate Estimation Using Permanent Scatterers in Differential SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(5):2202-2212. [14] FERRETTI A, PRATI C, ROCCA F. Permanent Scatterers in SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1):8-20. [15] KAMPES B M. Radar Interferometry:Persistent Scatterer Technique[M]. Netherlands:Springer, 2006. [16] 陈强. 基于永久散射体雷达差分干涉探测区域地表形变的研究[D]. 成都:西南交通大学, 2006. CHEN Qiang. Detection Regional Ground Deformation by Differential SAR Interferometry Based on Permanent Scatters[D]. Chengdu:Southwest Jiaotong University, 2006. [17] 熊文秀, 冯光财, 李志伟, 等. 顾及时空特性的SBAS高质量点选取算法[J]. 测绘学报, 2015, 44(11):1246-1254. DOI:10.11947/j.AGCS.2015.20140547. XIONG Wenxiu, FENG Guangcai, LI Zhiwei, et al. High Quality Targets Selection in SBAS-InSAR Technique by Considering Temporal and Spatial Characteristic[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(11):1246-1254. DOI:10.11947/j.AGCS.2015.20140547. [18] KAMPES B M, HANSSEN R F. Ambiguity Resolution for Permanent Scatterer Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(11):2446-2453. [19] HOOPER A, ZEBKER H A. Phase Unwrapping in Three Dimensions with Application to INSAR Time Series[J]. Journal of the Optical Society of America A, 2007, 24(9):2737-2747. [20] 李德仁, 廖明生, 王艳. 永久散射体雷达干涉测量技术[J]. 武汉大学学报(信息科学版), 2004, 29(8):664-668. LI Deren, LIAO Mingsheng, WANG Yan. Progress of Permanent Scatterer Interferometry[J]. Geomatics and Information Science of Wuhan University, 2004, 29(8):664-668. [21] BERARDINO P, FORNARO G, LANARI R, et al. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11):2375-2383. [22] HOOPER A J. Persistent Scatter Radar Interferometry for Crustal Deformation Studies and Modeling of Volcanic Deformation[D]. California:Stanford University, 2006. [23] MORA O, MALLORQUI J J, BROQUETAS A. Linear and Nonlinear Terrain Deformation Maps from a Reduced set of Interferometric SAR Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(10):2243-2253. [24] LI Zhiwei, ZHAO Rong, HU Jun, et al. InSAR Analysis of Surface Deformation over Permafrost to Estimate Active Layer Thickness Based on One-dimensional Heat Transfer Model of Soils[J]. Scientific Reports, 2015, 5:15542. [25] 李珊珊, 李志伟, 胡俊, 等. SBAS-InSAR技术监测青藏高原季节性冻土形变[J]. 地球物理学报, 2013, 56(5):1476-1486. LI Shanshan, LI Zhiwei, HU Jun, et al. Investigation of the Seasonal Oscillation of the Permafrost over Qinghai-Tibet Plateau with SBAS-InSAR Algorithm[J]. Chinese Journal of Geophysics, 2013, 56(5):1476-1486. [26] LAUKNES T R, ZEBKER H A, LARSEN Y. InSAR Deformation Time Series Using An L1-Norm Small-Baseline Approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1):536-546. [27] HOOPER A. A Multi-Temporal InSAR Method Incorporating Both Persistent Scatterer and Small Baseline Approaches[J]. Geophysical Research Letters, 2008, 35(16):L16302. [28] ZHANG Lei, LU Zhong, DING Xiaoli, et al. Mapping Ground Surface Deformation Using Temporarily Coherent Point SAR Interferometry:Application to Los Angeles Basin[J]. Remote Sensing of Environment, 2012, 117:429-439. [29] FERRETTI A, FUMAGALLI A, NOVALI F, et al. A New Algorithm for Processing Interferometric Data-Stacks:SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9):3460-3470. [30] LEE J S, POTTIER E. Polarimetric Radar Imaging:From Basics to Applications[M]. Boca Raton:CRC Press, 2009. [31] HOOPER A, BEKAERT D, SPAANS K, et al. Recent Advances in SAR Interferometry Time Series Analysis for Measuring Crustal Deformation[J]. Tectonophysics, 2012, 514-517:1-13. [32] PARIZZI A, BRCIC R. Adaptive InSAR Stack Multilooking Exploiting Amplitude Statistics:A Comparison Between Different Techniques and Practical Results[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(3):441-445. [33] GOEL K, ADAM N. An Advanced Algorithm for Deformation Estimation in Non-Urban Areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 73:100-110. [34] 蒋弥, 丁晓利, 何秀凤, 等. 基于快速分布式目标探测的时序雷达干涉测量方法:以Lost Hills油藏区为例[J]. 地球物理学报, 2016, 59(10):3592-3603. JIANG Mi, DING Xiaoli, HE Xiufeng, et al. FaSHPS-InSAR Technique for Distributed Scatterers:A Case Study over the Lost Hills Oil Field, California[J]. Chinese Journal of Geophysics, 2016, 59(10):3592-3603. [35] FORNARO G, VERDE S, REALE D, et al. CAESAR:An Approach Based on Covariance Matrix Decomposition to Improve Multibaseline-multitemporal Interferometric SAR Processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4):2050-2065. [36] WANG Yuanyuan, ZHU Xiaoxiang. Robust Estimators for Multipass SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2):968-980. [37] BECHOR N B D, ZEBKER H A. Measuring Two-dimensional Movements Using a Single InSAR Pair[J]. Geophysical Research Letters, 2006, 33(16):L16311. [38] HU J, LI Z W, DING X L, et al. 3D Coseismic Displacement of 2010 Darfield, New Zealand Earthquake Estimated from Multi-aperture InSAR and D-InSAR Measurements[J]. Journal of Geodesy, 2012, 86(11):1029-1041. [39] JO M J, JUNG H S, WON J S. Measurement of Precise Three-Dimensional Volcanic Deformations via TerraSAR-X Synthetic Aperture Radar Interferometry[J]. Remote Sensing of Environment, 2017, 192:228-237. [40] HU J, LI Z W, DING X L, et al. Resolving Three-dimensional Surface Displacements from InSAR Measurements:A Review[J]. Earth-Science Reviews, 2014, 133:1-17. [41] JUNG H S, WON J S, KIM S W. An Improvement of the Performance of Multiple-aperture SAR Interferometry (MAI)[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8):2859-2869. [42] CHAUSSARD E, AMELUNG F, ABIDIN H, et al. Sinking Cities in Indonesia:ALOS PALSAR Detects Rapid Subsidence Due to Groundwater and Gas Extraction[J]. Remote Sensing of Environment, 2013, 128:150-161. [43] ZHANG Yonghong, WU Hongan, KANG Yonghui, et al. Ground Subsidence in the Beijing-Tianjin-Hebei Region from 1992 to 2014 Revealed by Multiple SAR Stacks[J]. Remote Sensing, 2016, 8(8):675. [44] XU Bing, FENG Guangcai, LI Zhiwei, et al. Coastal Subsidence Monitoring Associated with Land Reclamation Using the Point Target Based SBAS-InSAR Method:A Case Study of Shenzhen, China[J]. Remote Sensing, 2016, 8(8):652. [45] CARNEC C, MASSONNET D, KING C. Two Examples of the Use of SAR Interferometry on Displacement Fields of Small Spatial Extent[J]. Geophysical Research Letters, 1996, 23(24):3579-3582. [46] 尹宏杰, 朱建军, 李志伟, 等. 基于SBAS的矿区形变监测研究[J]. 测绘学报, 2011, 40(1):52-58. YIN Hongjie, ZHU Jianjun, LI Zhiwei, et al. Ground Subsidence Monitoring in Mining Area Using DInSAR SBAS Algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(1):52-58. [47] NG A H M, GE Linlin, ZHANG Kui, et al. Deformation Mapping in Three Dimensions for Underground Mining Using InSAR-Southern Highland Coalfield in New South Wales, Australia[J]. International Journal of Remote Sensing, 2011, 32(22):7227-7256. [48] I Zhiwei, YANG Zefa, ZHU Jianjun, et al. Retrieving Three-dimensional Displacement Fields of Mining Areas from a Single InSAR Pair[J]. Journal of Geodesy, 2015, 89(1):17-32. [49] 杨泽发, 朱建军, 李志伟, 等. 基于单个雷达成像几何学SAR影像的矿区三维时序形变监测方法:中国, 201610546270.1[P]. 2016-12-14. YANG Zefa, ZHU Jianjun, LI Zhiwei, et al. Based on the Timing of Individual Mines Dimensional Radar Imaging Geometry SAR Image Deformation Monitoring Methods:China, 201610546270.1[P]. 2016-12-14. [50] FAN H D, CHENG D, DENG K Z, et al. Subsidence Monitoring Using D-InSAR and Probability Integral Prediction Modelling in Deep Mining Areas[J]. Survey Review, 2015, 47(345):438-445. [51] YANG Zefa, LI Zhiwei, ZHU Jianjun, et al. InSAR-Based Model Parameter Estimation of Probability Integral Method and Its Application for Predicting Mining-Induced Horizontal and Vertical Displacements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(8):4818-4832. [52] YANG Zefa, LI Zhiwei, ZHU Jianjun, et al. An Extension of the InSAR-Based Probability Integral Method and Its Application for Predicting 3-D Mining-Induced Displacements under Different Extraction Conditions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7):3835-3845. DOI:10.1109/TGRS.2017.2682192. [53] MASSONNET D, FEIGL K, ROSSI M, et al. Radar Interferometric Mapping of Deformation in the Year after the Landers Earthquake[J]. Nature, 1994, 369(6477):227-230. [54] TONG Xiaopeng, SMITH-KONTER B, SANDWELL D T. Is There A Discrepancy Between Geological and Geodetic Slip Rates along the San Andreas Fault System?[J]. Journal of Geophysical Research:Solid Earth, 2014, 119(3):2518-2538. [55] ELLIOTT J R, WALTERS R J, WRIGHT T J. The Role of Space-Based Observation in Understanding and Responding to Active Tectonics and Earthquakes[J]. Nature Communications, 2016, 7:13844. [56] 徐小波. 多手段InSAR技术研究及其在同震、震间形变监测中的应用[J]. 国际地震动态, 2016(6):34-36. XU Xiaobo. Multi-means InSAR Research and Its Application in Coseismic and Interseismic Deformation Monitoring[J]. Recent Developments in World Seismology, 2016(6):34-36. [57] MASSONNET D, BRIOLE P, ARNAUD A. Deflation of Mount Etna Monitored by Spaceborne Radar Interferometry[J]. Nature, 1995, 375(6532):567-570. [58] BRIOLE P, MASSONNET D, DELACOURT C. Post-Eruptive Deformation Associated with the 1986-87 and 1989 Lava Flows of Etna Detected by Radar Interferometry[J]. Geophysical Research Letters, 1997, 24(1):37-40. [59] LANARI R, LUNDGREN P, SANSOSTI E. Dynamic Deformation of Etna Volcano Observed by Satellite Radar Interferometry[J]. Geophysical Research Letters, 1998, 25(10):1541-1544. [60] JÓNSSON S, ZEBKER H, CERVELLI P, et al. A Shallow-Dipping Dike Fed the 1995 Flank Eruption at Fernandina Volcano, Galápagos, Observed by Satellite Radar Interferometry[J]. Geophysical Research Letters, 1999, 26(8):1077-1080. [61] BAGNARDI M, AMELUNG F, POLAND M P. A New Model for the Growth of Basaltic Shields Based on Deformation of Fernandina Volcano, Galápagos Islands[J]. Earth and Planetary Science Letters, 2013, 377-378:358-366. [62] XU Wenbin, RUCH J, JÓNSSON S. Birth of Two Volcanic Islands in the Southern Red Sea[J]. Nature Communications, 2015, 6:7104. [63] WRIGHT T J, EBINGER C, BIGGS J, et al. Magma-Maintained Rift Segmentation at Continental Rupture in the 2005 Afar Dyking Episode[J]. Nature, 2006, 442(7100):291-294. [64] RUCH J, WANG Teng, XU Wenbin, et al. Oblique Rift Opening Revealed by Reoccurring Magma Injection in Central Iceland[J]. Nature Communications, 2016, 7:12352. [65] PRITCHARD M E, SIMONS M. An InSAR-Based Survey of Volcanic Deformation in the Central Andes[J]. Geochemistry, Geophysics, Geosystems, 2004, 5(2):Q02002. [66] FOURNIER T J, PRITCHARD M E, RIDDICK S N. Duration, Magnitude, and Frequency of Subaerial Volcano Deformation Events:New Results from Latin America Using InSAR and A Global Synthesis[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(1):Q01003. [67] CHAUSSARD E, AMELUNG F. Precursory Inflation of Shallow Magma Reservoirs at West Sunda Volcanoes Detected by InSAR[J]. Geophysical Research Letters, 2012, 39(21):L21311. [68] EPPLER J, RABUS B. Monitoring Urban Infrastructure with An Adaptive Multilooking InSAR Technique[C]//Proceedings of Fringe 2011. Frascati, Italy:ADS, 2012:68. [69] BAKON M, PERISSIN D, LAZECKY M, et al. Infrastructure Non-Linear Deformation Monitoring via Satellite Radar Interferometry[J]. Procedia Technology, 2014, 16:294-300. [70] 周建民, 李震, 邢强. 基于雷达干涉失相干特性提取冰川边界方法研究[J]. 冰川冻土, 2010, 32(1):133-138. ZHOU Jianmin, LI Zhen, XING Qiang. Deriving Glacier Border Information Based on Analysis of Decorrelation in SAR Interferometry[J]. Journal of Glaciology and Geocryology, 2010, 32(1):133-138. [71] BELL R E, STUDINGER M, SHUMAN C A, et al. Large Subglacial Lakes in East Antarctica at the Onset of Fast-Flowing Ice Streams[J]. Nature, 2007, 445(7130):904-907. [72] STROZZI T, KOURAEV A, WIESMANN A, et al. Estimation of Arctic Glacier Motion with Satellite L-band SAR Data[J]. Remote Sensing of Environment, 2008, 112(3):636-645. [73] LUCKMAN A, QUINCEY D, BEVAN S. The Potential of Satellite Radar Interferometry and Feature Tracking for Monitoring Flow Rates of Himalayan Glaciers[J]. Remote Sensing of Environment, 2007, 111(2-3):172-181. [74] MOHR J J, REEH N, MADSEN S N. Three-Dimensional Glacial Flow and Surface Elevation Measured With Radar Interferometry[J]. Nature, 1998, 391(6664):273-276. [75] GRAY L. Using Multiple RADARSAT InSAR Pairs to Estimate a Full Three-Dimensional Solution for Glacial Ice Movement[J]. Geophysical Research Letters, 2011, 38(5):L05502. [76] AIZEN V B, KUZMICHENOK V A, SURAZAKOV A B, et al. Glacier Changes in the Tien Shan as Determined from Topographic and Remotely Sensed Data[J]. Global and Planetary Change, 2007, 56(3-4):328-340. [77] ROTT H, FLORICIOIU D, WUITE J, et al. Mass Changes of Outlet Glaciers along the Nordensjköld Coast, Northern Antarctic Peninsula, Based on TANDEM-X Satellite Measurements[J]. Geophysical Research Letters, 2014, 41(22):8123-8129. [78] BEVAN S L, LUCKMAN A, KHAN S A, et al. Seasonal Dynamic Thinning at Helheim Glacier[J]. Earth and Planetary Science Letters, 2015, 415:47-53. [79] NECKEL N, BRAUN A, KROPá?EK J, et al. Recent Mass Balance of the Purogangri Ice Cap, Central Tibetan Plateau, by Means of Differential X-band SAR Interferometry[J]. The Cryosphere, 2013, 7(5):1623-1633. [80] WANG Zhijun, LI Shusun. Detection of Winter Frost Heaving of the Active Layer of Arctic Permafrost Using SAR Differential Interferograms[C]//Proceedings of IEEE 1999 International Geoscience and Remote Sensing Symposium. Hamburg:IEEE, 1999, 4:1946-1948. [81] LIU Lin, ZHANG Tingjun, WAHR J. InSAR Measurements of Surface Deformation over Permafrost on the North Slope of Alaska[J]. Journal of Geophysical Research:Earth Surface, 2010, 115(F3):F03023. [82] LIU Lin, SCHAEFER K, ZHANG Tingjun, et al. Estimating 1992-2000 Average Active Layer Thickness on the Alaskan North Slope from Remotely Sensed Surface Subsidence[J]. Journal of Geophysical Research:Earth Surface, 2012, 117(F1):F01005. [83] CHEN Fulong, LIN Hui, LI Zhen, et al. Interaction between Permafrost and Infrastructure along the Qinghai-Tibet Railway detected via Jointly Analysis of C-and L-band Small Baseline SAR Interferometry[J]. Remote Sensing of Environment, 2012, 123:532-540. [84] CHEN Fulong, LIN Hui, ZHOU Wei, et al. Surface Deformation Detected by ALOS PALSAR Small Baseline SAR Interferometry over Permafrost Environment of Beiluhe Section, Tibet Plateau, China[J]. Remote Sensing of Environment, 2013, 138:10-18. [85] ZHAO Rong, LI Zhiwei, FENG Guangcai, et al. Monitoring Surface Deformation Over Permafrost with an Improved SBAS-InSAR Algorithm:With Emphasis on Climatic Factors Modeling[J]. Remote Sensing of Environment, 2016, 184:276-287. [86] JIA Yuanyuan, KIM J W, SHUM C K, et al. Characterization of Active Layer Thickening Rate over the Northern Qinghai-Tibetan Plateau Permafrost Region Using ALOS Interferometric Synthetic Aperture Radar Data, 2007-2009[J]. Remote Sensing, 2017, 9(1):84. [87] BERARDINO P, COSTANTINI M, FRANCESCHETTI G, et al. Use of Differential SAR Interferometry in Monitoring and Modelling Large Slope Instability at Maratea (Basilicata, Italy)[J]. Engineering Geology, 2003, 68(1-2):31-51. [88] HILLEY G E, BüRGMANN R, FERRETTI A, et al. Dynamics of Slow-moving Landslides from Permanent Scatterer Analysis[J]. Science, 2004, 304(5679):1952-1955. [89] MANZO M, RICCIARDI G P, CASU F, et al. Surface Deformation Analysis in the Ischia Island (Italy) Based on Spaceborne Radar Interferometry[J]. Journal of Volcanology and Geothermal Research, 2006, 151(4):399-416. [90] MICHEL R, AVOUAC J P, TABOURY J. Measuring Ground Displacements from SAR Amplitude Images:Application to the Landers Earthquake[J]. Geophysical Research Letters, 1999, 26(7):875-878. [91] GUDMUNDSSON S, SIGMUNDSSON F, CARSTENSEN J M. Three-dimensional Surface Motion Maps Estimated from Combined Interferometric Synthetic Aperture Radar and GPS Data[J]. Journal of Geophysical Research:Solid Earth, 2002, 107(B10):ETG 13-1-ETG 13-14. [92] ZHENG Wanji, HU Jun, ZHANG Wei, et al. Potential of Geosynchronous SAR Interferometric Measurements in Estimating Three-Dimensional Surface Displacements[J]. Science China Information Sciences, 2017, 60(6):060304. [93] PEPE A, SANSOSTI E, BERARDINO P, et al. On the Generation of ERS/ENVISAT DInSAR Time-Series via the SBAS Technique[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(3):265-269. [94] MEYER F J, CHOTOO K, CHOTOO S D, et al. The Influence of Equatorial Scintillation on L-band SAR Image Quality and Phase[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2):869-880. [95] REUVENI Y, BOCK Y, TONG Xiaopeng, et al. Calibrating Interferometric Synthetic Aperture Radar (InSAR) Images with Regional GPS Network Atmosphere Models[J]. Geophysical Journal International, 2015, 202(3):2106-2119. [96] CHEN A C, ZEBKER H A. Reducing Ionospheric Effects in InSAR Data Using Accurate Coregistration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1):60-70. [97] LIU Zhen, JUNG H S, LU Zhong. Joint Correction of Ionosphere Noise and Orbital Error in L-band SAR Interferometry of Interseismic Deformation in Southern California[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6):3421-3427. [98] LI Zhenhong, MULLER J P, CROSS P, et al. Interferometric Synthetic Aperture Radar (InSAR) Atmospheric Correction:GPS, Moderate Resolution Imaging Spectroradiometer (MODIS), and InSAR Integration[J]. Journal of Geophysical Research:Solid Earth, 2005, 110(B3):B03410. [99] BEKAERT D P S, HOOPER A, WRIGHT T J. A Spatially Variable Power Law Tropospheric Correction Technique for InSAR Data[J]. Journal of Geophysical Research:Solid Earth, 2015, 120(2):1345-1356. [100] 屈春燕, 单新建, 张国宏, 等. 干涉基线对地震形变场的影响——以玛尼地震同震-震后形变场为例[J]. 地震地质, 2012, 34(4):672-683. QU Chunyan, SHAN Xinjian, ZHANG Guohong, et al. Influence of Interferometric Baseline on Measurements of Seismic Deformation:A Case Study on the 1997 MANI, Tibet M7.7 Earthquake[J]. Seismology and Geology, 2012, 34(4):672-683. [101] SMALL D, WERNER C, NUESCH D. Baseline Modelling for ERS-1 SAR Interferometry[C]//Proceedings of 1993 International Geoscience and Remote Sensing Symposium, 1993. Better Understanding of Earth Environment. Tokyo:IEEE, 1993, 3:1204-1206. [102] BÄHR H, HANSSEN R F. Reliable Estimation of Orbit Errors in Spaceborne SAR Interferometry[J]. Journal of Geodesy, 2012, 76(12):1147-1164. [103] LIU Guang, HANSSEN R F, GUO Huadong, et al. Nonlinear Model for InSAR Baseline Error[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9):5341-5351. [104] 张亚利, 游扬声, 兰敬松. 基线误差、相位误差和大气延迟误差对InSAR数据处理的影响分析[J]. 遥感技术与应用, 2010, 25(3):399-403. ZHANG Yali, YOU Yangsheng, LAN Jingsong. Error Analysis of Baseline, Phase and Atmosphere Delay in InSAR Data Processing[J]. Remote Sensing Technology and Application, 2010, 25(3):399-403. [105] FERRETTI A, SAVIO G, BARZAGHI R, et al. Submillimeter Accuracy of InSAR Time Series:Experimental Validation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(5):1142-1153. [106] REFICE A, BELMONTE A, BOVENGA F, et al. On the Use of Anisotropic Covariance Models in Estimating Atmospheric Dinsar Contributions[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(2):341-345. [107] HU Jun, LI Zhiwei, SUN Qian, et al. Three-Dimensional Surface Displacements from InSAR and GPS Measurements with Variance Component Estimation[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4):754-758. |
[1] | 张祖勋, 姜慧伟, 庞世燕, 胡翔云. 多时相遥感影像的变化检测研究现状与展望[J]. 测绘学报, 2022, 51(7): 1091-1107. |
[2] | 许强, 朱星, 李为乐, 董秀军, 戴可人, 蒋亚楠, 陆会燕, 郭晨. “天-空-地”协同滑坡监测技术进展[J]. 测绘学报, 2022, 51(7): 1416-1436. |
[3] | 李志伟, 许文斌, 胡俊, 冯光财, 杨泽发, 李佳, 张恒, 陈琦, 朱建军, 王琪洁, 赵蓉, 段梦. InSAR部分地学参数反演[J]. 测绘学报, 2022, 51(7): 1458-1475. |
[4] | 李振洪, 朱武, 余琛, 张勤, 张成龙, 刘振江, 张雪松, 陈博, 杜建涛, 宋闯, 韩炳权, 周佳薇. 雷达影像地表形变干涉测量的机遇、挑战与展望[J]. 测绘学报, 2022, 51(7): 1485-1519. |
[5] | 龚健雅, 宦麟茜, 郑先伟. 影像解译中的深度学习可解释性分析方法[J]. 测绘学报, 2022, 51(6): 873-884. |
[6] | 单杰, 田祥希, 李爽, 李韧菲. 星载激光测高技术进展[J]. 测绘学报, 2022, 51(6): 964-982. |
[7] | 马张烽, 蒋弥, 李桂华, 黄腾. 空间网络对时序InSAR相位解缠的影响——以Delaunay与Dijkstra网络为例[J]. 测绘学报, 2022, 51(2): 248-257. |
[8] | 谢俊峰, 刘仁. 全波形星载激光测距误差抑制的滑动窗口高斯拟合算法[J]. 测绘学报, 2021, 50(9): 1240-1250. |
[9] | 邵凯, 张厚喆, 秦显平, 黄志勇, 易彬, 谷德峰. 分布式InSAR编队卫星精密绝对和相对轨道确定[J]. 测绘学报, 2021, 50(5): 580-588. |
[10] | 何秀凤, 高壮, 肖儒雅, 罗海滨, 冯灿. 多时相Sentinel-1A InSAR的连盐高铁沉降监测分析[J]. 测绘学报, 2021, 50(5): 600-611. |
[11] | 刘青豪, 张永红, 邓敏, 吴宏安, 康永辉, 魏钜杰. 大范围地表沉降时序深度学习预测法[J]. 测绘学报, 2021, 50(3): 396-404. |
[12] | 刘晗, 魏辉, 邹贤才. GRACE Follow-On卫星的星载GNSS相位测速法[J]. 测绘学报, 2021, 50(12): 1772-1779. |
[13] | 黎奇, 白征东, 陈波波, 过静珺, 辛浩浩, 程宇航, 黎琼, 吴斐. GNSS/INS多传感器组合高速铁路轨道测量系统[J]. 测绘学报, 2020, 49(5): 569-579. |
[14] | 郭迎钢, 李宗春, 何华, 张冠宇, 冯其强, 杨浩. 变形监测网稳定点选取的平方型Msplit相似变换法[J]. 测绘学报, 2020, 49(11): 1419-1429. |
[15] | 范千, 方绪华, 许承权, 杨荣华. 变形监测数据预报的动态贝叶斯ELM方法[J]. 测绘学报, 2019, 48(7): 919-925. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||