[1] WINOKUR R S. Operational use of civil space-based synthetic aperture radar(SAR) [R]. Pasadena, California: JPL Publication, 1996. [2] TANG Xinming, LI Tao, GAO Xiaoming Gao, et al. Research on key technologies of precise InSAR surveying and mapping applications using automatic SAR imaging [J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 27-37. [3] 黄国满. 机载多波段多极化干涉SAR测图系统——CASMSAR[J]. 测绘科学, 2014, 39(8): 111-115. HUANG Guoman. An airborne interferometric SAR mapping system with multi-band and multi-polarization: CASMSAR[J]. Science of Surveying and Mapping, 2014, 39(8): 111-115. [4] 刘哲延, 姚秀光, 刘东烈. 机载毫米波InSAR系统在贵州山区1∶5000专题测绘产品生产中的应用[C]. 第七届高分辨率对地观测学术年会.长沙:高分辨率对地观测学术联盟, 2020. LIU Zheyan, YAO Xiuguang, LIU Donglie. The application of airborne millimeter-wave InSAR system for producing thematic surveying and mapping achievements in scale of 1∶5000 in mountainous area of Guizhou[C]. The 7th China High Resolution Earth Observation Conference. Changsha, China:Academic Consortium for High Resolution Earth Observation, 2020. [5] 楼良盛, 刘志铭, 张昊, 等. 天绘二号卫星工程设计与实现[J]. 测绘学报, 2020, 49(10): 1252-1264.DOI: 10.11947/j.AGCS.2020.20200175. LOU Liangsheng, LIU Zhiming, ZHANG Hao, et al. TH-2 satellite engineering design and implementation[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(10): 1252-1264.DOI: 10.11947/j.AGCS.2020.20200175. [6] 国家测绘局. 中华人民共和国测绘行业标准: 基础地理信息数字成果 1∶5000 1∶10 000 1∶25 000 1∶50 000 1∶100 000 数字高程模型 CH/T 9009.2—2010[S]. 北京: 测绘出版社, 2010. National Bureau of Surveying and Mapping. Surveying and Mapping Industry Standard for the People’s Republic of China: Digital Products of Fundamental Geographic Informa-tion 1∶5000 1∶10 000 1∶25 000 1∶50 000 1∶100 000 Digital Elevation Models CH/T 9009.2—2010[S]. Beijing: Surveying and Mapping Publishing House, 2010. [7] 国家测绘局. 中华人民共和国测绘行业标准: 基础地理信息数字成果 1∶5000 1∶10 000 1∶25 000 1∶50 000 1∶100 000 数字正射影像图 CH/T 9009.3—2010[S]. 北京: 测绘出版社, 2010. National Bureau of Surveying and Mapping. Surveying and Mapping Industry Standard for the People’s Republic of China: Digital Products of Fundamental Geographic Information 1∶5000 1∶10 000 1∶25 000 1∶50 000 1∶100 000 Digital Orthophoto Maps CH/T 9009.3—2010[S]. Beijing: Surveying and Mapping Publishing House, 2010. [8] Department of Defense. Performance specification digital terrain elevation data (DTED) MIL-PRF-89020B[S]. Reston, VA: National Imagery and Mapping Agency, 2000. [9] KRIEGER G, MOREIRA A, FIEDLER H, et al. TanDEM-X: a satellite formation for high-resolution SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3317-3341. [10] GAO Xiaoming, LIU Yaolin, LI Tao, et al. High precision DEM generation algorithm based on InSAR multi-look iteration[J]. Remote Sensing, 2017, 9(7): 741. [11] 李志林, 朱庆, 谢潇. 数字高程模型 [M]. 北京: 科学出版社. 2017. Li Zhilin, Zhu Qing, Xie Xiao. Digital Elevation Model[M]. Beijing: Science Press. 2017. [12] 中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会. 中华人民共和国推荐性国家标准: 数字测绘成果质量检查与验收 GB/T 18316—2008[S]. 北京: 中国标准出版社, 2008. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of China. Recommends national standard of the People’s Republic of China: Specifications for Inspection and Acceptance of Quality of Digital Surveying and Mapping Achievements GB/T 18316—2008[S]. Beijing: China Standards Press, 2008. [13] RIZZOLI P, BRÄUTIGAM B, KRAUS T, et al. Relative height error analysis of TanDEM-X elevation data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 73: 30-38. [14] KONECNY G, SCHUHR W. Reliability of radar image data[C]//ISPRS 88 Kyoto-Congress. Kyoto, Japan:ISPRS, 1988. [15] 费文波, 张过, 唐新明, 等. 基于有理多项式模型的星载InSAR影像制作数字高程模型的研究[J]. 测绘学报, 2014, 43(1): 83-88. FEI Wenbo, ZHANG Guo, TANG Xinming, et al. Research of DEM generation by spaceborne InSAR images based RFM model[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(1): 83-88. [16] FRANZ W. LEBER L. Radargrammetric image processing [M]. Boston, London: Artech House. 1989. [17] GISINGER C, BALSS U, PAIL R, et al. Precise three-dimensional stereo localization of corner reflectors and persistent scatterers with TerraSAR-X[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 1782-1802. [18] EINEDER M,GISINGER C,BALSS U, et al. SAR imaging geodesy-recent results for TerraSAR-X and for Sentinel-1[C]//ESA Fringe Workshop.Helsinki,Finland:ESA, 2017. [19] HONG S, CHOI Y, PARK I, et al. Comparison of orbit-based and time-offset-based geometric correction models for SAR satellite imagery based on error simulation[J]. Sensors, 2017, 17(12): 170. [20] MONTAZERI S, GISINGER C, EINEDER M, et al. Automatic detection and positioning of ground control points using TerraSAR-X multiaspect acquisitions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(5): 2613-2632. [21] 丁刘建, 陶秋香, 李涛, 等. 高分三号SAR影像广域范围联合几何检校技术[J]. 测绘学报, 2020, 49(5): 598-610. DING Liujian, TAO Qiuxiang, LI Tao, et al. A joint geometric calibration technique for GF-3 SAR image in wide area[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(5): 598-610. [22] EINEDER M, MINET C, STEIGENBERGER P, et al. Imaging geodesy: toward centimeter-level ranging accuracy with TerraSAR-X[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(2): 661-671. [23] TOUTIN T, CARBONNEAU Y. MOS and Seasat image geometric corrections[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(3): 603-609. [24] EVANS D L, ALPERS W, CAZENAVE A, et al. Seasat: a 25-year legacy of success[J]. Remote Sensing of Environment, 2005, 94(3): 384-404. [25] COTE S, SRIVASTAVA S, MUIR S, et al. Radarsat-1 and -2 government calibration activities[C]//2009 IEEE International Geoscience and Remote Sensing Symposium. Cape Town, South Africa: IEEE, 2009. [26] FARR T G, ROSEN P A, CARO E, et al. The shuttle radar topography mission[J]. Reviews of Geophysics, 2007, 45(2): 361-393. [27] LIU Yongxue, HU Chuanmin, DONG Yanzhu, et al. Geometric accuracy of remote sensing images over oceans: the use of global offshore platforms[J]. Remote Sensing of Environment, 2019, 222: 244-266. [28] WILLIAMS D, WANG Yiman, FITZGERALD G, et al. Radarsat-2: image quality and calibration update[C]//European Conference on Synthetic Aperture Radar.Hamburg, Germany:VDE, 2016. [29] TOUTIN T, CHENIER R. 3-D radargrammetric modeling of Radarsat-2 ultrafine mode: preliminary results of the geometric calibration [J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3): 611-615. [30] JOHNSEN H, LAUKNES L, GUNERIUSSEN T. Geocoding of fast-delivery ERS-l SAR image mode product using DEM data[J]. International Journal of Remote Sensing, 1995, 16(11): 1957-1968. [30] MOHR J J, MADSEN S N. Geometric calibration of ERS satellite SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(4): 842-850. [32] SHIMADA M, ISOGUCHI O, TADONO T, et al. PALSAR CalVal summary(Jaxa-PI193)[C]//IGARSS2008.Boston, USA:IGARSS, 2007. [33] COVELLO F, BATTAZZA F, COLETTA A, et al. COSMO-SkyMed an existing opportunity for observing the earth [J]. Journal of Geodynamics, 2010, 49(3-4): 171-180. [34] SCHMIDT K, REIMANN J, RAMON N T, et al. Geometric accuracy of sentinel-1A and 1B derived from SAR raw data with GPS surveyed corner reflector positions[J]. Remote Sensing, 2018, 10(4): 523. [35] ZHU Jianjun, XIE Qinghua, ZUO Tingying, et al. Complex least squares adjustment to improve tree height inversion problem in PolInSAR [J]. Journal of Geodesy and Geoinformation Science, 2019, 2(1): 1-8. [36] BAMLER R. Interferometric stereo radargrammetry: absolute height determination from ERS-Envisat interferograms[C]//Proceedings of IEEE 2000 International Geoscience and Remote Sensing Symposium. Honolulu, HI, USA: IEEE, 2000. [37] 范军, 李涛, 左小清, 等. 利用参数独立分解的星载SAR干涉测量检校方法[J]. 测绘学报, 2019, 48(6): 737-746. FAN Jun, LI Tao, ZUO Xiaoqing, et al. Interferometric calibration method for spaceborne SAR based on independent parameter decomposition[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(6): 737-746. [38] 唐新明, 李涛, 高小明, 等. 雷达卫星自动成图的精密干涉测量关键技术[J]. 测绘学报, 2018, 47(6): 730-740. TANG Xinming, LI Tao, GAO Xiaoming, et al. Research on key technologies of precise InSAR surveying and mapping application using automatic SAR imaging[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6): 730-740. [39] MONTENBRUCK O, WERMUTH M, KAHLE R. GPS based relative navigation for the TanDEM-X mission: first flight results[J]. Navigation, 2011, 58(4): 293-304. [40] GONZÁLEZ J H, WALTER ANTONY J M, BACHMANN M, et al. Bistatic system and baseline calibration in TanDEM-X to ensure the global digital elevation model quality[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 73: 3-11. [41] 梁斌, 朱海龙, 张涛, 等. 星敏感器技术研究现状及发展趋势[J]. 中国光学, 2016, 9(1): 16-29. LIANG Bin, ZHU Hailong, ZHANG Tao, et al. Research status and development tendency of star tracker technique[J]. Chinese Optics, 2016, 9(1): 16-29. [42] GOLDSTEIN R M, ZEBKER H A, WERNER C L. Satellite radar interferometry: two-dimensional phase unwrapping[J]. Radio Science, 1988, 23(4): 713-720. [43] SCHTTLER B,EINEDER M,KNPFLE W,et al. Operational interferometric ERS TanDEM data processing[C]. Proceedings of the CEOS SAR Workshop.Toulouse, France:DLR, 1999. [44] BÄHR H. Orbital effects in spaceborne synthetic aperture radar interferometry[M]. [S.l.]Scientific Publishing. 2013. [45] SEYMOUR M, CUMMING I. Updating DEMs using Radarsat-1 data[J]. Canadian Journal of Remote Sensing, 2004, 30(6): 927-942. [46] TOUTIN T, OMARI K. DTM generation with Radarsat-2 data without GCP[C]. International Archives of Photogrammetry and Remote Sensing. Hannover, Germany: ISPRS,2011. [47] 李新武, 郭华东, 李震. Envisat/ASAR多角度干涉雷达数据山区DEM生成及精度分析 [J]. 遥感学报, 2009, 13(2): 276-281.[J]. 遥感学报, 2009, 13(2): 276-281. LI Xinwu, GUO Huadong, LI Zhen. DEM generation and accuracy analysis on rugged terrain using Envisat/ASAR multi-angle InSAR data[J]. Journal of Remote Sensing, 2009, 13(2): 276-281. [48] WEGMVLLER U, SANTORO M, WERNER C, et al. DEM generation using ERS-Envisat interferometry[J]. Journal of Applied Geophysics, 2009, 69(1): 51-58. [49] SHAWKY M, MOUSSA A, HASSAN Q K, et al. Pixel-based geometric assessment of channel networks/orders derived from global spaceborne digital elevation models[J]. Remote Sensing, 2019, 11(3): 235. [50] ROSA R A S, OLIVEIRA C G, RODRIGUES T G, et al. Repeat pass interferometry using ALOS-2 PALSAR-2 data (study case in Brazil)[J]. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020,: 107-113. [51] 姜德才. 重轨卫星InSAR技术在多云雨山区DEM生成及更新中的应用研究[D]. 北京: 中国测绘科学研究院, 2017. JIANG Decai. Repeat-pass spaceborne SAR interferometry for DEM generation in cloudy-rainy mountainous area[D]. Beijing: Chinese Academy of Surveying and Mapping, 2017. [52] RIZZOLI P, MARTONE M, GONZALEZ C, et al. Generation and performance assessment of the global TanDEM-X digital elevation model[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 132: 119-139. [53] LOMBARDI N, LORUSSO R, FASANO L, et al. Interferometric COSMO-SkyMed spotlight DEM generation[C]//2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Beijing, China:IEEE, 2016. [54] AGRAWAL R, DAS A, RAJAWAT A S. Accuracy assessment of digital elevation model generated by SAR stereoscopic technique using COSMO-SkyMed data[J]. Journal of the Indian Society of Remote Sensing, 2018, 46(10): 1739-1747. [55] GHANNADI M A, ENAYATI H, KHESALI E. Interferometric Sentinel-1 DEM generation: a case study in Tehran, Iran[C]. ISPRS Internatinal Joint Conference. Tehran, Iran:ISPRS, 2017. [56] LI Tao, TANG Xinming, CHEN Qianfu, et al. Research on the interferograms selection principles using Gaofen-3 for DSM production[C]//2019 Asia-Pacific Conference on Synthetic Aperture Radar.Xiamen, China:[s.n.],2019. |