测绘学报 ›› 2025, Vol. 54 ›› Issue (1): 52-63.doi: 10.11947/j.AGCS.2025.20240273
• 摄影测量学与遥感 • 上一篇
收稿日期:
2024-07-03
修回日期:
2024-12-29
发布日期:
2025-02-17
通讯作者:
段延松
E-mail:zhangzx@cae.cn;ysduan@whu.edu.cn
作者简介:
张祖勋(1937—),男,教授,博士生导师,中国工程院院士,研究方向为数字摄影测量与遥感。 E-mail:zhangzx@cae.cn
基金资助:
Zuxun ZHANG(), Xinbo ZHAO, Yansong DUAN(
)
Received:
2024-07-03
Revised:
2024-12-29
Published:
2025-02-17
Contact:
Yansong DUAN
E-mail:zhangzx@cae.cn;ysduan@whu.edu.cn
About author:
ZHANG Zuxun (1937—), male, professor, PhD supervisor, academician of Chinese Academy of Engineering, majors in digital photogrammetry and remote sensing. E-mail: zhangzx@cae.cn
Supported by:
摘要:
机载拼接式大面阵相机因其高分辨率、广覆盖性等优点在遥感测绘工作中广受欢迎。然而,由于制造工艺、装配精度等因素的影响,相机成像过程中会产生各种复杂畸变,影响影像质量和几何处理准确性。本文针对拼接式航空面阵相机的特点,提出一种分块多项式畸变模型,该模型核心思想是在Brown畸变模型检校残差矢量场引导下,将成像幅面划分为多个子影像块,在每个子块内采用多项式描述畸变,从而实现对各种复杂畸变的有效修正。此外,为求解分块多项式参数,设计了一种云控制检校方案。本文以北京空间机电研究所研制的AFC-900相机为研究对象,在肇东开展相机的云控制检校,然后分别在肇东、介休和汨罗3个测区开展生产验证,结果表明本文提出的畸变模型可以将AFC-900相机的畸变纠正到0.5像素以内,生产成果精度满足1∶500和1∶2000大比例尺测绘规范要求。
中图分类号:
张祖勋, 赵新博, 段延松. 机载拼接式大面阵相机的分块多项式畸变模型[J]. 测绘学报, 2025, 54(1): 52-63.
Zuxun ZHANG, Xinbo ZHAO, Yansong DUAN. A block-wise polynomial distortion model for airborne composite large-format camera[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(1): 52-63.
[1] |
张永军, 张祖勋, 龚健雅. 天空地多源遥感数据的广义摄影测量学[J]. 测绘学报, 2021, 50(1): 1-11. DOI:.
doi: 10.11947/j.AGCS.2021.20200245 |
ZHANG Yongjun, ZHANG Zuxun, GONG Jianya. Generalized photogrammetry of spaceborne, airborne and terrestrial multi-source remote sensing datasets[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(1): 1-11. DOI:.
doi: 10.11947/j.AGCS.2021.20200245 |
|
[2] | XU Z, QU L. A skeletal camera network for close-range images with a data driven approach in analyzing stereo configuration[J]. Journal of Geodesy and Geoinformation Science, 2022, 5(4): 23-37. |
[3] | LI J, WANG C, JIA C, et al. A hybrid conjugate gradient algorithm for solving relative orientation of big rotation angle stereo pair[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2): 62-70. |
[4] | ABDI G, SAMADZADEGAN F, KURZ F. Poseestimation of unmanned aerial vehicles based on a vision-aided multi-sensor fusion[EB/OL]. [2024-05-25]. https://elib.dlr.de/103817/. |
[5] | FANG Yong, HU Haiyan, GAO Li, et al. A geometric calibration model for the new ultra-large frame aerial mapping camera DMZ II[J]. The Photogrammetric Record, 2020, 35(170): 289-312. |
[6] | JACOBSEN K, NEUMANN K. Property of the large format digital aerial camera DMC Ⅱ[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, 39B1: 21-25. |
[7] | GORDON P. Systematic oblique aerial photography using multiple digital frame cameras[J]. Photogrammetric Engineering and Remote Sensing, 2009, 75(2): 102-107. |
[8] | ZEITLER W, DOERSTEL C, JACOBSEN K. Geometric calibration of the DMC: method and results[J]. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 2002, 34(1): 324-332. |
[9] | LUHMANN T, FRASER C, MAAS H G. Sensor modelling and camera calibration for close-range photogrammetry[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 115: 37-46. |
[10] | QTAISHAT K. Assessing the performance of different large format digital cameras by investigating the geometric accuracy and camera calibration[C]//Proceedings of 2015 International Archives of the Photogrammetry. [S.l.]: Scopus, 2015. |
[11] | FRASER C S. Digital camera self-calibration[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1997, 52(4): 149-159. |
[12] | SUN H, ZHANG Y. A self-calibration bundle adjustment algorithm based on block matrix cholesky decomposition technology[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(1): 11-30. |
[13] | MUELLER C, NEUMANN K. Leica DMC Ⅲ calibration and geometric sensor accuracy[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, XL-3/W4: 1-9. |
[14] | GRUBER M, LADSTADTER R. Calibrating the digital large format aerial camera UltraCamX[C]//Proceedings of 2007 International Calibration and Orientation Workshop. [S.l.]: IEEE, 2007. |
[15] | WIECHERT A, GRUBER M, PONTICELLI M. Ultracam: the new super-large format digital aerial camera[C]//Proceedings of 2011 American Society for Photogrammetry and Remote Sensing Annual Conference 2011. [S.l.]: Scopus, 2011: 519-525. |
[16] | MANSHOLT U, LADSTADTER R. Geometric analysis of vexcel imaging ultracamx test flights[C]//Proceedings of 2008 International Archives of the Photogrammetry. [S.l.]: ISPRS, 2008: 647-652. |
[17] | MA L, CHEN Y Q, MOORE K L. Analytical piecewise radial distortion model for precision camera calibration[J]. IEE Proceedings-Vision, Image, and Signal Processing, 2006, 153(4): 468. |
[18] | WU Ruiqing, LIU Jian, CHEN Wei, et al. Adaptive wide-lens distortion correction based on piecewise polynomial optimization[J]. Procedia Computer Science, 2019, 154: 573-580. |
[19] | 张春森, 严露, 于振. 一种Kannala模型的鱼眼相机标定方法优化[J]. 西安科技大学学报, 2019, 39(6): 1026-1032. |
ZHANG Chunsen, YAN Lu, YU Zhen. A fisheye camera calibration optimization method based on Kannala model[J]. Journal of Xi'an University of Science and Technology, 2019, 39(6): 1026-1032. | |
[20] | TANG Rongfu, FRITSCH D, CRAMER M. New rigorous and flexible Fourier self-calibration models for airborne camera calibration[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2012, 71: 76-85. |
[21] | BABAPOUR H, MOKHTARZADE M, VALADAN ZOEJ M J. Self-calibration of digital aerial camera using combined orthogonal models[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 117: 29-39. |
[22] | TECKLENBURG W, LUHMANN T, HASTEDT H. Camera modelling with image-variant parameters and finite elements[J]. Optical 3D measurement techniques V, 2001: 328-335. |
[23] | CRAMER M. Eurosdr network on digital camera calibration[J]. Official Publication-EuroSDR, 2004, 70(55): 61447189. |
[24] | CHEN Tianen, SHIBASAKI R, LIN Zongjian. A rigorous laboratory calibration method for interior orientation of an airborne linear push-broom camera[J]. Photogrammetric Engineering & Remote Sensing, 2007, 73(4): 369-374. |
[25] | ZHANG Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330-1334. |
[26] |
PI Yingdong, XIE Baorong, YANG Bo, et al. On-orbit geometric calibration of linear push-broom optical satellite based on sparse GCPs[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(1): 64-75. doi:.
doi: 10.11947/j.JGGS.2020.0107 |
[27] |
王涛, 张艳, 张永生, 等. 国产机载大视场三线阵CCD相机GNSS偏心矢量和IMU视轴偏心角标定技术[J]. 测绘学报, 2018, 47(11): 1474-1486. DOI:.
doi: 10.11947/J.AGCS.2018.20170679 |
WANG Tao, ZHANG Yan, ZHANG Yongsheng, et al. Investigation on GNSS lever arms and IMU boresight misalignment calibration of domestic airborne wide-field three CCD camera[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(11): 1474-1486. DOI:.
doi: 10.11947/j.AGCS.2018.20170679 |
|
[28] | TAO Pengjie, LU Luping, ZHANG Yong, et al. On-orbit geometric calibration of the panchromatic/multispectral camera of the ZY-1 02C satellite based on public geographic data[J]. Photogrammetric Engineering & Remote Sensing, 2014, 80(6): 505-517. |
[29] |
张祖勋, 陶鹏杰. 谈大数据时代的“云控制”摄影测量[J]. 测绘学报, 2017, 46(10): 1238-1248. DOI:.
doi: 10.11947/J.AGCS.2017.20170337 |
ZHANG Zuxun, TAO Pengjie. An overview on “cloud control” photogrammetry in big data era[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1238-1248. DOI:.
doi: 10.11947/j.AGCS.2017.20170337 |
|
[30] | 张祖勋, 段延松, 陶鹏杰. 从控制点到控制片[J]. 武汉大学学报(信息科学版), 2023, 48(11): 1715-1723. |
ZHANG Zuxun, DUAN Yansong, TAO Pengjie. From ground control point to digital control photo[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1715-1723. | |
[31] | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 数字航空摄影测量 空中三角测量规范:GB/T 23236—2009[S]. 北京: 中国标准出版社, 2009. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Specifications for aerotriangulation of digital aerophotogrammetry: GB/T 23236—2009[S]. Beijing: Standards Press of China, 2009. |
[1] | 孙根云, 孙超, 张爱竹. 融合多尺度与边缘特征的道路提取网络[J]. 测绘学报, 2024, 53(12): 2233-2243. |
[2] | 何海清, 陈敏, 陈婷, 李大军, 陈晓勇. 低空影像SfM三维重建的耦合单-多旋转平均迭代优化法[J]. 测绘学报, 2019, 48(6): 688-697. |
[3] | 张一, 姜挺, 江刚武, 余岸竹, 于英. 特征法视觉SLAM逆深度滤波的三维重建[J]. 测绘学报, 2019, 48(6): 708-717. |
[4] | 南轲, 齐华, 叶沅鑫. 深度卷积特征表达的多模态遥感影像模板匹配方法[J]. 测绘学报, 2019, 48(6): 727-736. |
[5] | 周凡. 视频影像增强虚拟三维场景的注册与渲染方法研究[J]. 测绘学报, 2019, 48(6): 801-801. |
[6] | 于英, 张永生, 薛武, 王涛. 一种稳健性增强和精度提升的增量式运动恢复结构方法[J]. 测绘学报, 2019, 48(2): 207-215. |
[7] | 皮英冬, 谢宝蓉, 杨博, 张昳玲, 李欣, 王密. 利用稀少控制点的线阵推扫式光学卫星在轨几何定标方法[J]. 测绘学报, 2019, 48(2): 216-225. |
[8] | 李斌, 魏俊博, 马博超, 王璐, 徐明霞. 不规则体体积计算三维激光点云切片法[J]. 测绘学报, 2019, 48(1): 42-52. |
[9] | 王丹菂, 徐青, 邢帅, 林雨准, 李鹏程. 一种由粗到精的机载激光测深信号检测方法[J]. 测绘学报, 2018, 47(8): 1148-1159. |
[10] | 靳国旺, 熊新, 张红敏, 徐青, 刘辉, 王新田. 相同侧视方向异轨SAR图像差异化约束连接点提取[J]. 测绘学报, 2018, 47(1): 91-101. |
[11] | 杨博, 王密, 皮英冬. 仅用虚拟控制点的超大区域无控制区域网平差[J]. 测绘学报, 2017, 46(7): 874-881. |
[12] | 李忠美, 边少锋, 瞿勇. 多像空间前方交会的抗差总体最小二乘估计[J]. 测绘学报, 2017, 46(5): 593-604. |
[13] | 张春森, 朱师欢, 臧玉府, 肖雄武, 薛万唱. 顾及曝光延迟的无人机GPS辅助光束法平差方法[J]. 测绘学报, 2017, 46(5): 565-572. |
[14] | 朱庆, 陈崇泰, 胡翰, 丁雨淋. 顾及纹理特征的航空影像自适应密集匹配方法[J]. 测绘学报, 2017, 46(1): 62-72. |
[15] | 于英, 张永生, 薛武, 李磊. 影像连接点均衡化高精度自动提取[J]. 测绘学报, 2017, 46(1): 90-97. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||