测绘学报 ›› 2022, Vol. 51 ›› Issue (3): 373-387.doi: 10.11947/j.AGCS.2022.20210135

• 地图学与地理信息 • 上一篇    下一篇

图形、图像融合利用的集成学习智能化简方法及其在岛屿岸线化简中的应用

杜佳威, 武芳, 朱丽, 刘呈熠, 王安东   

  1. 信息工程大学地理空间信息学院, 河南 郑州 450001
  • 收稿日期:2021-03-15 修回日期:2021-09-28 发布日期:2022-03-30
  • 通讯作者: 武芳 E-mail:wufang_630@126.com
  • 作者简介:杜佳威(1992-),男,博士生,研究方向为自动地图综合、空间数据智能处理等。E-mail:whdxdjw@126.com
  • 基金资助:
    国家自然科学基金(41801396);河南省杰出青年科学基金(212300410014)

An ensemble learning simplification approach based on multiple machine-learning algorithms with the fusion using of raster and vector data and a use case of coastline simplification

DU Jiawei, WU Fang, ZHU Li, LIU Chengyi, WANG Andong   

  1. Institute of Geographical Spatial Information, Information Engineering University, Zhengzhou 450001, China
  • Received:2021-03-15 Revised:2021-09-28 Published:2022-03-30
  • Supported by:
    The National Natural Science Foundation of China (No. 41801396); Excellent Youth Foundation of Henan Scientific Committee (No. 212300410014)

摘要: 为充分利用已有化简成果及其蕴含的化简知识,本文集成几种机器学习算法提出图形、图像融合利用的智能化简方法,实现顶点取舍决策的学习和优化。首先,分别利用全连接神经网络和卷积神经网络设计、构建基于图形的顶点取舍模型和基于图像的顶点取舍模型,通过样本训练各模型拟合从图形特征到顶点取舍和从栅格图像到顶点取舍的映射;然后,基于线性加权、朴素贝叶斯、支持向量机、人工神经网络构建多种融合决策模型,实现基于图形和基于图像的顶点取舍的融合利用;最后,通过试验用例对所有模型进行测试。试验结果表明:基于图形和基于图像的顶点取舍模型在一定程度上学习、掌握了化简算子,融合利用后还能进一步提高化简准确性、实现优势互补。

关键词: 地图综合, 化简, 机器学习, 人工神经网络

Abstract: To make use of accumulated simplification data and their contained simplification knowledge sufficiently, we propose an intelligent method based on the integration of several machine learning algorithms, which can use vector features and raster images to learn the vertex selection of polyline simplification in this paper. First, vertex selection models based on vector features and raster images are constructed by the fully connected neural network and the convolutional neural network respectively. Trained by corresponding samples, these two models can be utilized to generate vertex selection decisions via inputting vector features or raster images respectively. Second, some fusion models are constructed based on the linear weighting method, naive Bayes method, support vector machine, and artificial neural network to utilize outputs of vector-based and raster-based models to generate better decisions for vertex simplification. Finally, the proposed method applies into a use case. Experimental results show that the vector-based model and the raster-based model can learn and master vertex simplification in different levels, and fusion models can make complementary advantages of raster-based and vector-based models to improve the simplification accuracy further, and the best fusion model is better than some other simplification methods.

Key words: map generalization, simplification, machine learning, artificial neural network

中图分类号: