[1] 于海若, 宫辉力, 陈蓓蓓, 等. 京津冀地区地面沉降研究进展与思考[J]. 测绘科学, 2020, 45(4): 125-133, 141. YU Hairuo, GONG Huili, CHEN Beibei, et al. The advance and consideration of land subsidence in Beijing-Tianjin-Hebei region[J]. Science of Surveying and Mapping, 2020, 45(4): 125-133, 141. [2] 宁晓刚, 王浩, 林祥国, 等. 京津冀城市群1990—2015年城区时空扩展监测与分析[J]. 测绘学报, 2018, 47(9): 1207-1215.DOI: 10.11947/j.AGCS.2018.20170414. NING Xiaogang, WANG Hao, LIN Xiangguo, et al. Spatio-temporal urban sprawl monitoring and analysis over Beijing-Tianjin-Hebei urban agglomeration during 1990—2015[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(9): 1207-1215.DOI: 10.11947/j.AGCS.2018.20170414. [3] RILEY F S. Analysis of borehole extensometer data from central California[C]//Proceedings of 1969 Tokyo Symposium. Tokyo, Japan: IAHS, 1969. [4] 刘欣, 商安荣, 贾勇帅, 等. PS-InSAR和SBAS-InSAR在城市地表沉降监测中的应用对比[J]. 全球定位系统, 2016, 41(2): 101-105. LIU Xin, SHANG Anrong, JIA Yongshuai, et al. Application contrast of PS-InSAR and SBAS-InSAR in urban surface subsidence monitoring[J]. GNSS World of China, 2016, 41(2): 101-105. [5] LIU Yong, HUANG Haijun. Characterization and mechanism of regional land subsidence in the Yellow River Delta, China[J]. Natural Hazards, 2013, 68(2): 687-709. [6] MILLER M M, SHIRZAEI M. Spatiotemporal characterization of land subsidence and uplift in Phoenix using InSAR time series and wavelet transforms[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(8): 5822-5842. [7] 朱建军, 李志伟, 胡俊. InSAR变形监测方法与研究进展[J]. 测绘学报, 2017, 46(10): 1717-1733. DOI: 10.11947/j.AGCS.2017.20170350. ZHU Jianjun, LI Zhiwei, HU Jun. Research progressand methods of InSAR for deformation monitoring[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1717-1733.DOI: 10.11947/j.AGCS.2017.20170350. [8] 陆燕燕. 基于多源SAR数据的苏锡常地区地面沉降监测与影响因素分析[J]. 测绘学报, 2019, 48(7): 938.DOI: 10.11947/j.AGCS.2019.20180345. LU Yanyan. Land subsidence monitoring and influencing factors analysis in Suzhou, Wuxi and Changzhou based on multi-source SAR data[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(7): 938.DOI: 10.11947/j.AGCS.2019.20180345. [9] 刘媛媛. 不同尺度综合地表形变InSAR时序监测与机理分析[J]. 测绘学报, 2020, 49(7): 935.DOI: 10.11947/j.AGCS.2020.20190339. LIU Yuanyuan. InSAR time series monitoring and mechanism analysis of comprehensive surface deformation at different scales[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(7): 935.DOI: 10.11947/j.AGCS.2020.20190339. [10] 何秀凤, 高壮, 肖儒雅, 等. 多时相Sentinel-1A InSAR的连盐高铁沉降监测分析[J]. 测绘学报, 2021, 50(5): 600-611.DOI: 10.11947/j.AGCS.2021.20200226. HE Xiufeng, GAO Zhuang, XIAO Ruya, et al. Monitoring and analysis of subsidence along Lian-Yan railway using multi-temporal Sentinel-1A InSAR[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(5): 600-611.DOI: 10.11947/j.AGCS.2021.20200226. [11] 刘青豪, 张永红, 邓敏, 等. 大范围地表沉降时序深度学习预测法[J]. 测绘学报, 2021, 50(3): 396-404.DOI: 10.11947/j.AGCS.2021.20200038. LIU Qinghao, ZHANG Yonghong, DENG Min, et al. Time series prediction method of large-scale surface subsidence based on deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(3): 396-404.DOI: 10.11947/j.AGCS.2021.20200038. [12] 俞晓莹. 改进的SBAS地表形变监测及地下水应用研究[D]. 长沙: 中南大学, 2012. YU Xiaoying. Improved SBAS surface deformation monitoring and groundwater application research[D].Changsha: Central South University, 2012. [13] CHEN M, TOMÁS R, LI Z, et al. Imaging land subsidence induced by groundwater extraction in Beijing (China) using satellite radar interferometry[J]. Remote Sensing, 2016, 8(6): 468. [14] 张子文. 时序InSAR地面沉降监测与地下水-地面沉降预测模型参数反演[D]. 阜新: 辽宁工程技术大学, 2017. ZHANG Ziwen. Time series InSAR land subsidence monitoring and parameter inversion of groundwater-land subsidence prediction model[D].Fuxin: Liaoning Technical University, 2017. [15] 冯伟, Jean-Michel LEMOINE, 钟敏, 等. 利用重力卫星GRACE监测亚马逊流域2002—2010年的陆地水变化[J]. 地球物理学报, 2012, 55(3): 814-821. FENG Wei, LEMOINE J M, ZHONG Min, et al. Terrestrial water storage changes in the Amazon Basin measured by GRACE during 2002—2010[J]. Chinese Journal of Geophysics, 2012, 55(3): 814-821. [16] 郭飞霄, 孙中苗, 任飞龙, 等. GRACE时变重力场各向异性高斯组合滤波方法[J]. 测绘学报, 2019, 48(7): 898-907.DOI: 10.11947/j.AGCS.2019.20180365. GUO Feixiao, SUN Zhongmiao, REN Feilong, et al. Non-isotropic Gaussian combination filtering method of GRACE time-variable gravity[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(7): 898-907.DOI: 10.11947/j.AGCS.2019.20180365. [17] LIU Zhen, LIU Pangwei, MASSOUD E, et al. Monitoring groundwater change in California's central valley using sentinel-1 and GRACE observations[J]. Geosciences, 2019, 9(10): 436. [18] 吴红波. 基于ICESat-GLAS和GRACE卫星遥感资料的高亚洲冰川物质平衡变化研究[J]. 测绘学报, 2020, 49(4): 534.DOI: 10.11947/j.AGCS.2020.20190187. WU Hongbo. Study on the change of mass balance of glaciers in high Asia based on ICESat-GLAS and GRACE satellite remote sensing data[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(4): 534.DOI: 10.11947/j.AGCS.2020.20190187. [19] 秦毅坤, 王泽根, 范东明. 青藏高原区域水储量变化的GRACE RL06和TRMM联合反演[J]. 测绘学报, 2020, 49(10): 1285-1294.DOI: 10.11947/j.AGCS.2020.20200026. QIN Yikun, WANG Zegen, FAN Dongming. The joint inversion of regional water reserve changes in the Qinghai-Tibet Plateau based on GRACE RL06 and TRMM data[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(10): 1285-1294.DOI: 10.11947/j.AGCS.2020.20200026. [20] SUN Zhangli, LONG Di, YANG Wenting, et al. Reconstruction of GRACE data on changes in total water storage over the global land surface and 60 basins[J]. Water Resources Research, 2020, 56(4): e2019WR026250. [21] HUSSAIN D, KHAN A A, HASSAN S N U, et al. A time series assessment of terrestrial water storage and its relationship with hydro-meteorological factors in Gilgit-Baltistan region using GRACE observation and GLDAS-Noah model[J]. SN Applied Sciences, 2021, 3(5): 533. [22] 马震, 谢海澜, 林良俊, 等. 京津冀地区国土资源环境地质条件分析[J]. 中国地质, 2017, 44(5): 857-873. MA Zhen, XIE Hailan, LIN Liangjun, et al. The environmental geological conditions of Land resources in the Beijing-Tianjin-Hebei region[J]. Geology in China, 2017, 44(5): 857-873. [23] WATKINS M M, WIESE D N, YUAN D N, et al. Improved methods for observing Earth's time variable mass distribution with GRACE using spherical cap mascons[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(4): 2648-2671. [24] 郭飞霄, 孙中苗, 任飞龙, 等. 不同Mascon模型解比较分析[J]. 大地测量与地球动力学, 2019, 39(10): 1022-1026. GUO Feixiao, SUN Zhongmiao, REN Feilong, et al. Comparison and analysis of different mascon model results[J]. Journal of Geodesy and Geodynamics, 2019, 39(10): 1022-1026. [25] WIESEDN, LANDERERFW, WATKINS M M. Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution[J]. Water Resources Research, 2016, 52(9): 7490-7502. [26] WANG R, LUO Y, YANG Y, et al. Characterization of land subsidence induced by groundwater withdrawals in Wenyu River alluvial fan, Beijing, China[J]. Proceedings of the International Association of Hydrological Sciences, 2015, 372: 481-484. [27] 李晓龙. MCTSB-InSAR沉降监测技术及其应用[D]. 阜新: 辽宁工程技术大学, 2017. LI Xiaolong. MCTSB-InSAR settlement monitoring technology and its application[D]. Fuxin: Liaoning Technical University, 2017. [28] HOFFMANN J, ZEBKER H A. The application of satellite radar interferometry to the study of land subsidence over developed aquifer systems[M].Stanford:Stanford University, 2003. |