[1] 童庆禧, 张兵, 张立福. 中国高光谱遥感的前沿进展[J]. 遥感学报, 2016, 20(5):689-707. TONG Qingxi, ZHANG Bing, ZHANG Lifu. Current progress of hyperspectral remote sensing in China[J]. Journal of Remote Sensing, 2016, 20(5):689-707. [2] WANG Qi, LIN Jianzhe, YUAN Yuan. Salient band selection for hyperspectral image classification via manifold ranking[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(6):1279-1289. [3] 贺霖, 潘泉, 邸韡, 等. 高光谱图像目标检测研究进展[J]. 电子学报, 2009, 37(9):2016-2024. HE Lin, PAN Quan,DI Wei, et al. Research advance on target detection for hyperspectral imagery[J]. Acta Electronica Sinica, 2009, 37(9):2016-2024. [4] LI Lu, LI Wei, DU Qian, et al. Low-rank and sparse decomposition with mixture of Gaussian for hyperspectral anomaly detection[J]. IEEE Transactions on Cybernetics, 2021, 51(9):4363-4372. [5] LI Shutao, ZHANG Kunzhong, DUAN Puhong, et al. Hyperspectral anomaly detection with kernel isolation forest[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1):319-329. [6] REED I S, YU X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990, 38(10):1760-1770. [7] MOLERO J M, GARZÓN E M, GARCÍA I, et al. Analysis and optimizations of global and local versions of the RX algorithm for anomaly detection in hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(2):801-814. [8] KWON H, NASRABADI N M. Kernel RX-algorithm:a nonlinear anomaly detector for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(2):388-397. [9] LI Wei, DU Qian. Collaborative representation for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3):1463-1474. [10] LI Jiayi, ZHANG Hongyan, ZHANG Liangpei, et al. Hyperspectral anomaly detection by the use of background joint sparse representation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6):2523-2533. [11] WANG Rong, HU Haojie, HE Fang, et al. Self-weighted collaborative representation for hyperspectral anomaly detection[J]. Signal Processing, 2020, 177:107718. [12] ZHANG Yuxiang, DU Bo, ZHANG Liangpei, et al. A low-rank and sparse matrix decomposition-based mahalanobis distance method for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3):1376-1389. [13] KANG Xudong, ZHANG Xiangping, LI Shutao, et al. Hyperspectral anomaly detection with attribute and edge-preserving filters[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10):5600-5611. [14] XIE Weiying, JIANG Tao, LI Yunsong, et al. Structure tensor and guided filtering-based algorithm for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7):4218-4230. [15] TAO Ran, ZHAO Xudong, LI Wei, et al. Hyperspectral anomaly detection by fractional Fourier entropy[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(12):4920-4929. [16] HUANG Zhihong, FANG Leyuan, LI Shutao. Subpixel-pixel-superpixel guided fusion for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(9):5998-6007. [17] CHANG Shizhen, DU Bo, ZHANG Liangpei. A subspace selection-based discriminative forest method for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6):4033-4046. [18] SCHLEGL T, SEEBÖCK P, WALDSTEIN S M, et al. FAnoGAN:fast unsupervised anomaly detection with generative adversarial networks[J]. Medical Image Analysis, 2019, 54:30-44. [19] CAO V L, NICOLAU M, MCDERMOTT J. Learning neural representations for network anomaly detection[J]. IEEE Transactions on Cybernetics, 2019, 49(8):3074-3087. [20] 范潇杰,陈振安.基于LSTM和多种异常定义的卫星异常检测方法[J].测控技术,2021,40(11):78-87,95. FAN Xiaojie,CHEN Zhen'an. Satellite anomaly detection system based on LSTM and various anomaly definitions[J]. Measurement & Control Technology, 2021, 40(11)78-87, 95. [21] KIRAN B, THOMAS D, PARAKKAL R. An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos[J]. Journal of Imaging, 2018, 4(2):36. [22] ZARE A, JIAO C, GLENN T. Discriminative multiple instance hyperspectral target characterization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(10):2342-2354. [23] HINTON G E, ZEMEL R S. Autoencoders, minimum description length and Helmholtz free energy[J]. Advances in Neural Information Processing Systems, 1994, 6:3-10. [24] HONG Y, HWANG U, YOO J, et al. How generative adversarial networks and their variants work[J]. ACM Computing Surveys, 2020, 52(1):1-43. [25] XIE Weiying, LIU Baozhu, LI Yunsong, et al. Spectral adversarial feature learning for anomaly detection in hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4):2352-2365. [26] LU Xiaoqiang, ZHANG Wuxia, HUANG Ju. Exploiting embedding manifold of autoencoders for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(3):1527-1537. [27] LEI Jie, FANG Shuo, XIE Weiying, et al. Discriminative reconstruction for hyperspectral anomaly detection with spectral learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(10):7406-7417. [28] WANG Shaoyu, WANG Xinyu, ZHANG Liangpei, et al. Auto-AD:autonomous hyperspectral anomaly detection network based on fully convolutional autoencoder[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-14. [29] XIANG P, ALI S, JUNG S K, et al. Hyperspectral anomaly detection with guided autoencoder[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-18. [30] WEI Jie, ZHANG Jingfa, XU Yang, et al. Hyperspectral anomaly detection based on graph regularized variational autoencoder[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:1-5. [31] JIANG Tao, LI Yunsong, XIE Weiying, et al. Discriminative reconstruction constrained generative adversarial network for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7):4666-4679. [32] LI Wei, WU Guodong, DU Qian. Transferred deep learning for anomaly detection in hyperspectral imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(5):597-601. [33] SONG Shangzhen, ZHOU Huixin, YANG Yixin, et al. Hyperspectral anomaly detection via convolutional neural network and low rank with density-based clustering[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(9):3637-3649. [34] YANG Xu, DENG Cheng, ZHENG Feng, et al. Deep spectral clustering using dual autoencoder network[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach:IEEE,2020:4061-4070. [35] JIANG Kai, XIE Weiying, LI Yunsong, et al. Semisupervised spectral learning with generative adversarial network for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7):5224-5236. [36] XIE Weiying, LIU Baozhu, LI Yunsong, et al. Autoencoder and adversarial-learning-based semisupervised background estimation for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8):5416-5427. [37] BEGGEL L, PFEIFFER M, BISCHL B. Robust anomaly detection in images using adversarial autoencoders[EB/OL].[2019.06-03].https://arxiv.org/abs/1901.06355. [38] Goodfellow I. et al.Generative adversarial nets[C]//Proceedings of 2014 Advances Inneural Information Processing Systems. Montreal, 2014:SPRINGER, 2014,2672-2680. [39] MAKHZANI A, SHLENS J, JAITLY N, et al. Adversarial autoencoders[EB/OL].[2015-05-06].https://arxiv.org/abs/1511.05644. [40] LEVEAU V, JOLY A. Adversarial autoencoders for novelty detection[C]//Proceedings of International Conference on Learning Representations.Toulon:ICLR, 2017. [41] VU H S, UETA D, HASHIMOTO K, et al. Anomaly detection with adversarial dual autoencoders[EB/OL].[2019-06-23].https://arxiv.org/abs/1902.06924. [42] ZHONG Jiaping, XIE Weiying, LI Yunsong, et al. Characterization of background-anomaly separability with generative adversarial network for hyperspectral anomaly detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7):6017-6028. |