测绘学报 ›› 2023, Vol. 52 ›› Issue (8): 1317-1329.doi: 10.11947/j.AGCS.2023.20220002

• 摄影测量学与遥感 • 上一篇    下一篇

结合测地距离场与曲线平滑的遥感图像道路中心线快速提取

连仁包1,2, 张振敏1,2, 廖一鹏3, 邹长忠4, 黄立勤3   

  1. 1. 福建江夏学院电子信息科学学院, 福建 福州 350108;
    2. 福建江夏学院数字福建智能家居信息采集及处理物联网省级重点实验室, 福建 福州 350108;
    3. 福州大学物理与信息工程学院, 福建 福州 350108;
    4. 福州大学计算机与大数据学院, 福建 福州 350108
  • 收稿日期:2022-01-04 修回日期:2022-07-02 发布日期:2023-09-07
  • 通讯作者: 黄立勤 E-mail:hlq@fzu.edu.cn
  • 作者简介:连仁包(1979-),男,博士,教授,主要从事遥感图像处理、信息处理与模式识别研究。E-mail:lrb@fjjxu.edu.cn
  • 基金资助:
    国家自然科学基金(61471124);福建省自然科学基金 (2021J011226;2020J01935;2021J01611);福建江夏学院国基培育基金(JXZ2021001)

A quick road centreline extraction method from remote sensing images combining with geodesic distance field and curve smoothing

LIAN Renbao1,2, ZHANG Zhenmin1,2, LIAO Yipeng3, ZOU Changzhong4, HUANG Liqin3   

  1. 1. College of Electronics and Information Science, Fujian Jiangxia University, Fuzhou 350108, China;
    2. Provincial Key Laboratory of Digital Fujian Smart Home Information Collection and Processing Internet of Things, Fujian Jiangxia University, Fuzhou 350108, China;
    3. College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China;
    4. College of Computer and Big Data, Fuzhou University, Fuzhou 350108, China
  • Received:2022-01-04 Revised:2022-07-02 Published:2023-09-07
  • Supported by:
    The National Natural Science Foundation of China (No. 61471124);The Natural Science Foundation of Fujian Province (Nos. 2021J011226; 2020J01935;2021J01611);The National Foundation Cultivation Foundation of Fujian Jiangxia University (No. JXZ2021001)

摘要: 从高分辨遥感图像中快速提取道路信息在地图绘制、城市规划和更新GIS数据库等方面至关重要,半自动道路提取作为道路测绘内业的主要方式,是一项劳动密集型工作。为了降低人工介入代价,提高工作效率,本文提出了一种基于测地距离场的道路中心线快速提取算法。首先,利用最佳圆形模板算法,自动估计道路宽度的同时将人工种子调整到道路中心;然后,为了定位道路中心线,提出基于道路显著图的柔性道路中心核密度估计算法,克服了传统道路中心核密度估计中道路分割阈值预设困难的问题;本文提出快速生成测地距离场算法,可快速跟踪种子之间的测地线,大大提高了道路中心线提取的效率;最后对测地线坐标进行均值滤波平滑,获得了光滑的道路中心线。大量的试验和对比数据表明,本文算法能够在保证精度的前提下快速提取道路中心线,大幅降低人工介入代价,提高道路提取的工作效率;值得强调的是,本文算法在图像分辨率固定的前提下,提取任意长度道路中心线的耗时近乎相同,且无须设置超参数,具有较好的人机交互体验。

关键词: 测地距离场, 曲线平滑, 道路中心线提取, 遥感图像

Abstract: Quickly extracting road networks from high-resolution remote sensing images is crucial in mapping, urban planning, and GIS databases updating. Semi-automatic road extraction, as the main method of road surveying and mapping, is a labor-intensive task. In order to reduce the cost of manual intervention and improve extraction efficiency, this paper proposes a fast road centerline extraction algorithm based on geodesic distance field. First, the optimal circular template is proposed to automatically estimated the road width and adjust the manual seeds to road center based on the morphological gradient map, and the road saliency map is calculated according to the local color features inside the templates. Second, we propose the soft road center kernel density based on road saliency map which overcomes the difficulty of threshold presetting of road segmentation in traditional road center kernel density estimation. Most importantly, a geodesic distance field is proposed to quickly extract the geodesic curve between two consecutive seeds, which dramatically increase the efficiency of our algorithm. Finally, we introduce the mean filter into our scheme to smooth the road centerlines. Extensive experiments and quantitative comparisons show that the proposed algorithm can greatly reduce manual intervention without losing much accuracy, and significantly improve the efficiency of road extraction. Furthermore, the proposed algorithm takes almost the same time to extract any length of road centerline given fixed image size, and no hyperparameters need to be set. The algorithm behaves good experience in human-computer interaction.

Key words: geodesic distance field, curve smoothing, road centerline extraction, remote sensing images

中图分类号: