[1] 杨钊霞, 邹峥嵘, 陶超,等. 空-谱信息与稀疏表示相结合的高光谱遥感影像分类[J]. 测绘学报, 2015, 44(7): 775-781.DOI: 10.11947/j.AGCS.2015.20140207. YANG Zhaoxia, ZOU Zhengrong, TAO Chao,et al. Hyperspectral image classification based on the combination of spatial-spectral feature and sparse representation[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(7): 775-781.DOI: 10.11947/j.AGCS.2015.20140207. [2] ANAND R, VENI S, ARAVINTH J. Big data challenges in airborne hyperspectral image for urban landuse classification[C]//Proceedings of 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI). Udupi:IEEE, 2017. [3] 魏立飞, 余铭, 钟燕飞,等. 空-谱融合的条件随机场高光谱影像分类方法[J]. 测绘学报, 2020, 49(3): 343-354. DOI: 10.11947/j.AGCS.2020.20190042. WEI Lifei, YU Ming, ZHONG Yanfei,et al. Hyperspectral image classification method based on space-spectral fusion conditional random field[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(3): 343-354.DOI: 10.11947/j.AGCS.2020.20190042. [4] EL-SHARKAWY Y H, ELBASUNEY S.Hyperspectral imaging: a new prospective for remote recognition of explosive materials[J]. Remote Sensing Applications: Society and Environment, 2019, 13: 31-38. [5] AGARWAL A, EL-GHAZAWI T, EL-ASKARY H, et al. Efficient hierarchical-PCA dimension reduction for hyperspectral imagery[C]//Proceedings of 2007 IEEE International Symposium on Signal Processing and Information Technology. Giza:IEEE, 2007. [6] BENEDIKTSSON J A, PALMASON J A, SVEINSSON J R. Classification of hyperspectral data from urban areas based on extended morphological profiles[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 480-491. [7] CAMPS-VALLS G, BRUZZONE L. Kernel-based methods for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(6): 1351-1362. [8] XING Chen, MA Li, YANG Xiaoquan. Stacked denoise autoencoder based feature extraction and classification for hyperspectral images[J]. Journal of Sensors, 2016: 1-10. [9] HU Wei, HUANG Yangyu, WEI Li, et al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015: 1-12. [10] MOU Lichao, GHAMISI P, ZHU Xiaoxiang. Deep recurrent neural networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3639-3655. [11] CHEN Yushi, ZHU Lin, GHAMISI P, et al. Hyperspectral images classification with Gabor filtering and convolutional neural network[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(12): 2355-2359. [12] LIU Bing, YU Xuchu, ZHANG Pengqiang, et al. Supervised deep feature extraction for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4): 1909-1921. [13] CHEN Yushi, JIANG Hanlu, LI Chunyang,et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(10): 6232-6251. [14] ZHONG Zilong, LI J, LUO Zhiming, et al. Spectral-spatial residual network for hyperspectral image classification: a 3D deep learning framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2): 847-858. [15] 刘冰, 余旭初, 张鹏强,等. 联合空-谱信息的高光谱影像深度三维卷积网络分类[J]. 测绘学报, 2019, 48(1): 53-63.DOI: 10.11947/j.AGCS.2019.20170578. LIU Bing, YU Xuchu, ZHANG Pengqiang,et al. Deep 3D convolutional network combined with spatial-spectral features for hyperspectral image classification[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1): 53-63.DOI: 10.11947/j.AGCS.2019.20170578. [16] TANG Xu, MENG Fanbo, ZHANG Xiangrong, et al. Hyperspectral image classification based on 3D octave convolution with spatial-spectral attention network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3): 2430-2447. [17] WANG Kexian, ZHENG Shunyi, LI Rui, et al.A deep double-channel dense network for hyperspectral image classification[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(4): 46-62. [18] PAOLETTI M E, HAUT J M, FERNANDEZ-BELTRAN R, et al. Capsule networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4): 2145-2160. [19] 高奎亮, 余旭初, 宋治杭, 等. 联合空谱信息的高光谱影像深度胶囊网络分类[J]. 遥感学报, 2021, 25(6): 1257-1269. GAO Kuiliang, YU Xuchu, SONG Zhihang,et al. Deep capsule network combined with spatial-spectral information for hyperspectral image classification[J]. National Remote Sensing Bulletin, 2021, 25(6): 1257-1269. [20] 许夙晖, 慕晓冬, 张雄美,等. 结合对抗网络与辅助任务的遥感影像无监督域适应方法[J]. 测绘学报, 2017, 46(12): 1969-1977.DOI: 10.11947/j.AGCS.2017.20170291. XU Suhui, MU Xiaodong, ZHANG Xiongmei,et al. Unsupervised remote sensing domain adaptation method with adversarial network and auxiliary task[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(12): 1969-1977.DOI: 10.11947/j.AGCS.2017.20170291. [21] 左溪冰, 刘冰, 余旭初,等. 高光谱影像小样本分类的图卷积网络方法[J]. 测绘学报, 2021, 50(10): 1358-1369.DOI: 10.11947/j.AGCS.2021.20200155. ZUO Xibing, LIU Bing, YU Xuchu,et al. Graph convolutional network method for small sample classification of hyperspectral images[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(10): 1358-1369.DOI: 10.11947/j.AGCS.2021.20200155. [22] 陶超, 阴紫薇, 朱庆,等. 遥感影像智能解译: 从监督学习到自监督学习[J]. 测绘学报, 2021, 50(8): 1122-1134.DOI: 10.11947/j.AGCS.2021.20210089. TAO Chao, YIN Ziwei, ZHU Qing,et al. Remote sensing image intelligent interpretation: from supervised learning to self-supervised learning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1122-1134.DOI: 10.11947/j.AGCS.2021.20210089. [23] 刘冰, 左溪冰, 谭熊,等. 高光谱影像分类的深度少样例学习方法[J]. 测绘学报, 2020, 49(10): 1331-1342. DOI: 10.11947/j.AGCS.2020.20190486. LIU Bing, ZUO Xibing, TAN Xiong,et al. A deep few-shot learning algorithm for hyperspectral image classification[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(10): 1331-1342.DOI: 10.11947/j.AGCS.2020.20190486. [24] JIAO Licheng, LIANG Miaomiao, CHEN Huan,et al. Deep fully convolutional network-based spatial distribution prediction for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10): 5585-5599. [25] ZOU Liang, ZHU Xingliang, WU Changfeng,et al. Spectral-spatial exploration for hyperspectral image classification via the fusion of fully convolutional networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 659-674. [26] SHEN Yu, ZHU Sijie, CHEN Chen, et al. Efficient deep learning of nonlocal features for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7): 6029-6043. [27] ZHENG Zhuo, ZHONG Yanfei, MA Ailong, et al. FPGA: fast patch-free global learning framework for fully end-to-end hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(8): 5612-5626. [28] XU Yonghao, DU Bo, ZHANG Liangpei. Beyond the patchwise classification: spectral-spatial fully convolutional networks for hyperspectral image classification[J]. IEEE Transactions on Big Data, 2020, 6(3): 492-506. [29] WANG Di, DU Bo, ZHANG Liangpei. Fully contextual network for hyperspectral scene parsing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-16. [30] WANG Yuxian, LI Kui, XU Linlin,et al. A depthwise separable fully convolutional ResNet with ConvCRF for semisupervised hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 4621-4632. [31] JIANG Gangwu, SUN Yifan, LIU Bing. A fully convolutional network with channel and spatial attention for hyperspectral image classification[J]. Remote Sensing Letters, 2021, 12(12): 1238-1249. [32] SUN Yifan, LIU Bing, YU Xuchu,et al. Resolution reconstruction classification: fully octave convolution network with pyramid attention mechanism for hyperspectral image classification[J]. International Journal of Remote Sensing, 2022, 43(6): 2076-2105. [33] WANG Jingdong, SUN Ke, CHENG Tianheng, et al. Deep high-resolution representation learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3349-3364. [34] SHELHAMER E,LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. [35] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2023-08-15]. https://arxiv.org/abs/1409.1556.pdf. [36] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas:IEEE,2016. [37] NOH H, HONG S, HAN B. Learning deconvolution network for semantic segmentation[C]//Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV). Santiago:IEEE, 2015: 1520-1528. [38] RONNEBERGER O,FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2015: 234-241. [39] BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. [40] WANG Wenju, DOU Shuguang, JIANG Zhongmin,et al. A fast dense spectral-spatial convolution network framework for hyperspectral images classification[J]. Remote Sensing, 2018, 10(7): 1068. |