[1] JIANG San, JIANG Wanshou, WANG Lizhe. Unmanned aerial vehicle-based photogrammetric 3D mapping:a survey of techniques, applications, and challenges[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(2):135-171. [2] 陈武, 姜三, 李清泉, 等. 无人机影像增量式运动恢复结构研究进展[J]. 武汉大学学报(信息科学版), 2022, 47(10):1662-1674. CHEN Wu, JIANG San, LI Qingquan,et al. Recent research of incremental structure from motion for unmanned aerial vehicle images[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10):1662-1674. [3] JIANG San, JIANG Wanshou, HUANG Wei, et al. UAV-based oblique photogrammetry for outdoor data acquisition and offsite visual inspection of transmission line[J]. Remote Sensing, 2017, 9(3):278. [4] ZHENG J, FU H, LI W, et al. Growing status observation for oil palm trees using unmanned aerial vehicle (UAV) images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 173:95-121. [5] 姜三, 许志海, 张峰, 等. 面向无人机倾斜影像的高效SfM重建方案[J]. 武汉大学学报(信息科学版), 2019, 44(8):1153-1161. JIANG San, XU Zhihai, ZHANG Feng, et al. Solution for efficient SfM reconstruction of oblique UAV images[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8):1153-1161. [6] 张力, 刘玉轩, 孙洋杰, 等. 数字航空摄影三维重建理论与技术发展综述[J]. 测绘学报, 2022, 51(7):1437-1457.DOI:10.11947/J.AGCS.2022.20220130. ZHANG Li, LIU Yuxuan, SUN Yangjie, et al. A review of developments in the theory and technology of three-dimensional reconstruction in digital aerial photogrammetry[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7):1437-1457.DOI:10.11947/J.AGCS.2022.20220130. [7] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110. [8] ARANDJELOVIC R, ZISSERMAN A. Three things everyone should know to improve object retrieval[C]//Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition. New York:ACM Press, 2012:2911-2918. [9] DONG Jingming, SOATTO S. Domain-size pooling in local descriptors:DSP-SIFT[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston:IEEE, 2015:5097-5106. [10] SUN Yanbiao, ZHAO Liang, HUANG Shoudong, et al. 2-SIFT:sift feature extraction and matching for large images in large-scale aerial photogrammetry[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 91:1-16. [11] SEDAGHAT A, EBADI H. Remote sensing image matching based on adaptive binning SIFT descriptor[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(10):5283-5293. [12] 范大昭, 董杨, 张永生. 卫星影像匹配的深度卷积神经网络方法[J]. 测绘学报, 2018, 47(6):844-853. DOI:10.11947/J.AGCS.2018.20170627. FAN Dazhao, DONG Yang, ZHANG Yongsheng. Satellite image matching method based on deep convolution neural network[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6):844-853. DOI:10.11947/J.AGCS.2018.20170627. [13] 蓝朝桢, 卢万杰, 于君明, 等. 异源遥感影像特征匹配的深度学习算法[J]. 测绘学报, 2021, 50(2):189-202.DOI:10.11947/J.AGCS.2021.20200048. LAN Chaozhen, LU Wanjie, YU Junming,et al. Deep learning algorithm for feature matching of cross modality remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(2):189-202.DOI:10.11947/J.AGCS.2021.20200048. [14] JIN Yuhe, MISHKIN D, MISHCHUK A, et al. Image matching across wide baselines:from paper to practice[J]. International Journal of Computer Vision, 2021, 129(2):517-547. [15] BALNTAS V, RIBA E, PONSA D, et al. Learning local feature descriptors with triplets and shallow convolutional neural networks[C]//Proceedings of 2016 British Machine Vision Conference 2016. York:British Machine Vision Association, 2016:3. [16] TIAN Yurun, FAN Bin, WU Fuchao. L2-net:deep learning of discriminative patch descriptor in euclidean space[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE, 2017:661-669. [17] MISHCHUK A, MISHKIN D,RADENOVIĆ F, et al. Working hard to know your neighbor's margins:local descriptor learning loss[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York:ACM Press, 2017:4829-4840. [18] LUO Zixin, SHEN Tianwei, ZHOU Lei, et al. GeoDesc:learning local descriptors by integrating geometry constraints[EB/OL].[2023-12-30]. https://arxiv.org/abs/1807.06294.pdf. [19] DETONE D, MALISIEWICZ T, RABINOVICH A. SuperPoint:self-supervised interest point detection and description[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.Salt Lake City:IEEE, 2018:224-236. [20] DUSMANU M, ROCCO I, PAJDLA T, et al. D2-net:a trainable CNN for joint description and detection of local features[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach:IEEE, 2019:8092-8101. [21] LUO Zixin, ZHOU Lei, BAI Xuyang, et al. ASLFeat:learning local features of accurate shape and localization[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:IEEE, 2020:6589-6598. [22] SARLIN P E, DETONE D, MALISIEWICZ T, et al. SuperGlue:learning feature matching with graph neural networks[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:IEEE, 2020:4938-4947. [23] SUN Jiaming, SHEN Zehong, WANG Yuang, et al. LoFTR:detector-free local feature matching with transformers[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Nashville:IEEE, 2021:8922-8931. [24] BALNTAS V, LENC K, VEDALDI A, et al. HPatches:a benchmark and evaluation of handcrafted and learned local descriptors[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE, 2017:5173-5182. [25] PHILBIN J, CHUM O, ISARD M, et al. Object retrieval with large vocabularies and fast spatial matching[C]//Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition.Minneapolis:IEEE, 2007:1-8. [26] SCHONBERGER J L, FRAHM J M. Structure-from-motion revisited[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE, 2016:4104-4113. |