测绘学报 ›› 2024, Vol. 53 ›› Issue (3): 435-449.doi: 10.11947/j.AGCS.2024.20230305

• 大地测量学与导航 • 上一篇    下一篇

基于R2AU-Net的InSAR相位解缠方法

何毅1,2,3, 杨旺1,2,3, 朱庆4   

  1. 1. 兰州交通大学测绘与地理信息学院, 甘肃 兰州 730070;
    2. 地理国情监测技术应用国家地方联合工程研究中心, 甘肃 兰州 730070;
    3. 甘肃省地理国情监测工程实验室, 甘肃 兰州 730070;
    4. 西南交通大学地球科学与环境工程学院, 四川 成都 611756
  • 收稿日期:2023-07-28 修回日期:2024-02-20 发布日期:2024-04-08
  • 通讯作者: 朱庆 E-mail:zhuq66@263.net
  • 作者简介:何毅(1987—),男,博士,教授,博士生导师,研究方向为InSAR数据处理方法,地表形变、地质灾害监测与预测。E-mail:heyi@mail.lzjtu.cn
  • 基金资助:
    国家自然科学基金(42201459);甘肃省杰出青年基金(23JRRA881)

An InSAR phase unwrapping method based on R2AU-Net

HE Yi1,2,3, YANG Wang1,2,3, ZHU Qing4   

  1. 1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China;
    2. National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China;
    3. Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China;
    4. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
  • Received:2023-07-28 Revised:2024-02-20 Published:2024-04-08
  • Supported by:
    The National Natural Science Foundation of China (No. 42201459); The Outstanding Youth Fund of Gansu Province (No. 23JRRA881)

摘要: InSAR相位解缠的质量直接影响地形高程或地表形变的反演精度。传统的基于非机器学习模型的相位解缠方法(如基于路径跟踪或最小范数)在低相干性或相位梯度较大(干涉条纹密集)的区域难以获得正确解缠结果。深度神经网络算法在非线性表示和特征表达能力方面具有独特优势,被广泛应用于数字图像处理研究中,InSAR相位解缠可视为图像回归。本文提出基于R2AU-Net深度神经网络的InSAR相位解缠方法。首先,基于数学分形法模拟成对的缠绕和解缠相位,避免了外部DEM合成相位时引入的固有误差和残缺问题,保持了地貌特征的多样性及复杂性,得到模型训练所需的数据集。然后,基于传统的U-Net模型构建R2AU-Net相位解缠模型,该模型结合注意力机制增强了模型对于卷积特征筛选能力,提高了在低相干或条纹密集区域的解缠性能;使用循环残差卷积结构,避免了梯度消失问题,增强了模型特征表示能力。最后,利用模拟和真实数据进行试验分析,结果表明本文提出的R2AU-Net相位解缠模型能够更有效地保留地形高程或真实地表形变信息,提高了解缠结果的可靠性,在性能表现上优于Goldstein枝切法、SNAPHU方法及CNN和U-Net相位解缠模型。

关键词: InSAR, 相位解缠, 深度神经网络, U-Net, 地表形变

Abstract: The accuracy of terrain elevation or surface deformation retrieval relies heavily on the quality of InSAR phase unwrapping. Conventional phase unwrapping techniques, rooted in non-machine learning models (such as path-following or minimum norm), face challenges in producing accurate unwrapping outcomes within areas of low coherence or high phase gradients (dense interference fringes). Deep neural network models offer distinct advantages in nonlinear representation and feature expression, widely employed in digital image processing research, wherein InSAR phase unwrapping parallels image regression.This paper presents an InSAR phase unwrapping approach utilizing the R2AU-net. Initially, pairs of wrapped and unwrapped phases are simulated through mathematical fractal methods, circumventing inherent errors and artifacts introduced by integrating external DEMs into the phase. This approach maintains terrain feature diversity and complexity while providing the requisite dataset for model training. Subsequently, the R2AU-net phase unwrapping model, built upon the foundational U-net model, incorporates attention mechanisms to augment the model's convolutional feature selection capacity, thereby improving unwrapping performance in regions of low coherence or dense striping. The utilization of recurrent residual convolutional structures addresses the vanishing gradient issue, enhancing the model's feature representation capability.Ultimately, experimental analyses are conducted using both simulated and real data. The results demonstrate that the proposed R2AU-net phase unwrapping model effectively retains terrain elevation or real surface deformation information, thereby bolstering the reliability of unwrapping outcomes. In terms of performance, it surpasses established methods such as the Goldstein branch-cut method, SNAPHU method, as well as CNN and U-Net phase unwrapping models.

Key words: InSAR, phase unwrapping, deep neural network, U-Net, surface deformation

中图分类号: