测绘学报 ›› 2024, Vol. 53 ›› Issue (4): 589-598.doi: 10.11947/j.AGCS.2024.20230594

• 实时遥感测绘专栏 •    下一篇

高效通信的在轨分布式高光谱图像处理

谢卫莹(), 王子璇(), 李云松   

  1. 西安电子科技大学空天地一体化综合业务网全国重点实验室,陕西 西安 710071
  • 收稿日期:2024-01-02 修回日期:2024-03-22 发布日期:2024-05-13
  • 通讯作者: 王子璇 E-mail:wyxie@xidian.edu.cn;zxwang1002@stu.xidian.edu.cn
  • 作者简介:谢卫莹(1988—),女,博士,教授,博士生导师,主要研究方向为遥感图像在轨处理与分析。E-mail:wyxie@xidian.edu.cn
  • 基金资助:
    国家重点研发计划(2023YFE0208100);国家自然科学基金(62322117)

Efficient-communication on-orbit distributed hyperspectral image processing

Weiying XIE(), Zixuan WANG(), Yunsong LI   

  1. State Key Laboratory of Integrated Services Networks, Xidian University, Xi'an 710071, China
  • Received:2024-01-02 Revised:2024-03-22 Published:2024-05-13
  • Contact: Zixuan WANG E-mail:wyxie@xidian.edu.cn;zxwang1002@stu.xidian.edu.cn
  • About author:XIE Weiying (1988—), female, PhD, professor, PhD supervisor, majors in on-orbit processing and analysis of remote sensing images. E-mail: wyxie@xidian.edu.cn
  • Supported by:
    The National Key Research and Development Program of China(2023YFE0208100);The National Natural Science Foundation of China(62322117)

摘要:

随着在轨遥感卫星数量的增加及高光谱成像技术的进步,能够获取到的高光谱数据量急剧增长,人类步入了大数据应用和数据驱动的科学发现时代。然而,如此大体量、大幅宽的高光谱数据导致了深度学习算法难以在单节点上学习和推理,为实时高效的信息智能解译带来了极大的挑战。因此,需要综合多星资源分布式协同解析,以解决分块处理带来的块效应。然而,协同处理必然伴随着信息的交互与传输,为进一步降低传输信息量,需要对梯度进行压缩,以缓解分布式学习中的通信瓶颈。本文综合探讨了多种主流的高效通信梯度压缩算法,特别关注其在通信受限的在轨环境下的优劣,并展望了梯度压缩的发展趋势。通过广泛的试验对比,本文全面评估了多种梯度压缩方法在高光谱图像处理中的表现,试验证明不同方法的适用性和性能差异,为未来在实际应用中选择最合适的梯度压缩方法提供了有力的参考。

关键词: 分布式学习, 梯度压缩, 高效通信, 高光谱图像, 在轨处理

Abstract:

In recent years, with the increase in the number of on-orbit remote sensing satellites and advancements in hyperspectral imaging technology, there has been a sharp rise in the volume of available hyperspectral data, marking an era of big data applications and data-driven scientific discoveries. However, this substantial and wide-ranging volume of hyperspectral data poses significant challenges for deep learning algorithms to learn and infer on a single node, hindering real-time and efficient intelligent interpretation of information. Therefore, there is a need for comprehensive multi-satellite resource distributed cooperative analysis to address the block effects caused by block processing. However, collaborative processing inherently involves information interaction and transmission, necessitating gradient compression to reduce the transmitted information further, thereby alleviating communication bottlenecks in distributed learning. This paper comprehensively discusses various mainstream efficient communication gradient compression algorithms, specifically focusing on their pros and cons in communication-constrained on-orbit environments, and provides insights into the developmental trends of gradient compression. Through extensive experimental comparisons, we comprehensively evaluate the performance of various gradient compression methods in hyperspectral image processing. These experiments demonstrate the applicability and performance differences of different methods, providing robust references for selecting the most suitable gradient compression methods in practical applications in the future.

Key words: distributed learning, gradient compression, efficient-communication, hyperspectral image, on-orbit processing

中图分类号: