测绘学报 ›› 2024, Vol. 53 ›› Issue (7): 1417-1428.doi: 10.11947/j.AGCS.2024.20230162

• 摄影测量与遥感 • 上一篇    下一篇

顾及空间异质性和特征优选的滑坡易发性评价方法

刘雅婷1,2(), 陈传法1,2()   

  1. 1.山东科技大学测绘与空间信息学院,山东 青岛 266590
    2.山东省基础地理信息与数字化技术重点实验室,山东 青岛 266590
  • 收稿日期:2023-05-24 发布日期:2024-08-12
  • 通讯作者: 陈传法 E-mail:chlyt2017@163.com;chencf@sdust.edu.cn
  • 作者简介:刘雅婷(1998—),女,硕士生,研究方向为地质灾害早期识别和风险分析。E-mail:chlyt2017@163.com
  • 基金资助:
    国家自然科学基金(42271438);山东省自然科学基金(ZR2020YQ26);山东省高等学校青创科技支持计划(2019KJH007)

Landslide susceptibility evaluation method considering spatial heterogeneity and feature selection

Yating LIU1,2(), Chuanfa CHEN1,2()   

  1. 1.College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China
    2.Key Laboratory of Geomatics and Digital Technology of Shandong Province, Shandong University of Science and Technology, Qingdao 266590, China
  • Received:2023-05-24 Published:2024-08-12
  • Contact: Chuanfa CHEN E-mail:chlyt2017@163.com;chencf@sdust.edu.cn
  • About author:LIU Yating (1998—), female, postgraduate, majors in early identification and risk analysis of geological hazards. E-mail: chlyt2017@163.com
  • Supported by:
    The National Natural Science Foundation of China(42271438);Shandong Provincial Natural Science Foundation(ZR2020YQ26);The Project of Shandong Province Higher Educational Youth Innovation Science and Technology Program(2019KJH007)

摘要:

高效、精准、可靠的滑坡易发性评价方法是灾前科学预警和全面防治的关键手段。然而,传统滑坡易发性评价方法未能有效解决空间异质性和冗余特征造成的预测偏差。针对该问题,本文提出了一种顾及空间异质性和特征优选的滑坡易发性评价方法(spatial feature optimized Stacking,SF-Stacking)。该方法首先使用AGNES聚类(agglomerative nesting)将研究区全局栅格单元分成若干个局部子区,然后采用一种特征优选策略为每个子区选择最优致灾因子组合,最后采用Stacking集成技术耦合多种机器学习算法实现滑坡易发性评价。以宜宾市为研究区,基于滑坡灾害易发性分区图和统计学指标,将SF-Stacking方法与7种传统方法对比表明,SF-Stacking方法的准确性最优,稳健性最强,可解释性最高。

关键词: 滑坡易发性, 空间异质性, 特征优选, Stacking集成学习

Abstract:

The establishment of an accurate, reliable and efficient landslide susceptibility assessment method is a key tool for pre-disaster scientific warning and comprehensive prevention and control. However, the traditional landslide susceptibility evaluation method fails to effectively address the prediction bias caused by the spatial heterogeneity and redundant features. To address this problem, this paper proposes a method for evaluating landslide susceptibility (SF-Stacking) that takes into account spatial heterogeneity and feature optimization. The method first uses AGNES (agglomerative nesting) to divide the global raster cells into several local regions, then uses a strategy which takes into account feature optimization to select the optimal combination of feature factors for each sub-region, and finally uses Stacking integration technology to couple multiple machine learning algorithms to achieve landslide susceptibility evaluation. Using Yibin city as the study area, the SF-Stacking method is compared with seven state-of-the-art methods based on the landslide hazard susceptibility zoning map and statistical indicators. Results show that the SF-Stacking method has the best accuracy, the highest robustness and the best interpretability.

Key words: landslide susceptibility, spatial heterogeneity, feature optimization, Stacking ensemble learning

中图分类号: