
测绘学报 ›› 2025, Vol. 54 ›› Issue (4): 714-724.doi: 10.11947/j.AGCS.2025.20240340
• 大地测量学与导航 • 上一篇
翟振和1(
), 孙中苗1, 马健1, 管斌1, 黄河1, 欧阳明达1, 黄令勇2, 黄志勇2, 潘星辰2, 袁仕耿3, 刘胜利4, 刘森4
收稿日期:2024-08-20
发布日期:2025-05-30
作者简介:翟振和(1980—),男,博士,副研究员,研究方向为海洋测绘与重磁探测。 E-mail:zhaizhenhe1980@163.com
基金资助:
Zhenhe ZHAI1(
), Zhongmiao SUN1, Jian MA1, Bin GUAN1, He HUANG1, Mingda OUYANG1, Lingyong HUANG2, Zhiyong HUANG2, Xingchen PAN2, Shigeng YUAN3, Shengli LIU4, Sen LIU4
Received:2024-08-20
Published:2025-05-30
About author:ZHAI Zhenhe (1980—), male, PhD, associate researcher, majors in marine surveying and gravity magnetic exploration. E-mail: zhaizhenhe1980@163.com
Supported by:摘要:
本文采用国内首个搭载合成孔径雷达高度计的编队跟飞海洋测绘卫星(COATS)及美国SWOT卫星海面高数据开展了重力扰动矢量(垂线偏差和扰动重力)反演研究。采用区域反距离加权迭代方法对COATS卫星的异常数据进行了滤波处理,有效剔除了沿轨异常值。针对双星跟飞模式、宽刈幅模式特点,采用基于多方向海面坡度的估计方法求解格网垂线偏差,并反演得到海域扰动重力。西太平洋区域计算表明,COATS卫星在垂线偏差求解中充分利用了交轨方向上的近实时海面高,跟飞模式下可实现局部1′×1′垂线偏差计算,与EIGEN-6C4模型计算的1′×1′垂线偏差比较,南北、东西分量互差标准差分别为1.7″和2.3″。SWOT卫星作为国际上首颗宽刈幅干涉测高卫星,在垂线偏差求解上其南北分量和东西分量精度保持一致,与EIGEN-6C4模型计算的1′×1′垂线偏差比较,南北、东西分量互差标准差约1.8″,充分体现了宽刈幅各向观测均匀的优势。以SIO 32.1版重力数据作为参考基准,COATS卫星数据计算的5′×5′、SWOT卫星数据计算的1′×1′及联合两个卫星数据联合计算的1′×1′重力异常与参考值比较的标准差分别为6.4、5.2和4.9 mGal。考虑到COATS和SWOT卫星是目前国际上真正实现1′×1′海面高测量的卫星,未来联合两颗卫星的长期积累数据将不断得到更加密集的垂线偏差和扰动重力,进而将进一步提高海域重力场的精细程度。
中图分类号:
翟振和, 孙中苗, 马健, 管斌, 黄河, 欧阳明达, 黄令勇, 黄志勇, 潘星辰, 袁仕耿, 刘胜利, 刘森. 中国编队海洋测绘卫星数据反演海域重力扰动矢量及性能分析[J]. 测绘学报, 2025, 54(4): 714-724.
Zhenhe ZHAI, Zhongmiao SUN, Jian MA, Bin GUAN, He HUANG, Mingda OUYANG, Lingyong HUANG, Zhiyong HUANG, Xingchen PAN, Shigeng YUAN, Shengli LIU, Sen LIU. Gravity field inversion from China ocean altimetry tandem satellites data and performance analysis[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(4): 714-724.
| [1] | 许厚泽, 王海瑛, 陆洋, 等. 利用卫星测高数据推求中国近海及邻域大地水准面起伏和重力异常研究[J]. 地球物理学报, 1999. 42(4): 465-471. |
| XU Houze, WANG Haiying, LU Yang, et al. Geoid undulations and gravity anomalies from T/P and ERS-1altimeter data in the China sea and vicinity[J]. Chinese Journal of Geophysics(in Chinese), 1999, 42(4): 465-471. | |
| [2] | 李建成, 陈俊勇, 宁津生, 等. 地球重力场逼近理论与中国2000似大地水准面的确定[M]. 武汉: 武汉大学出版社, 2003. |
| LI Jiancheng, CHEN Junyong, NING Jinshen, et al. Approximation theory of earth gravity field and determination of China 2000 quasi geoid(in Chinese)[M]. Wuhan: Wuhan University Press, 2003. | |
| [3] | VIGNUDELL I, KOSTIANOY A, CIPOLLINI P. Coastal altimetry[M]. Berlin: Springer, 2011. |
| [4] | SANDWELL D T, MÜLLER R D, SMITH W H F, et al. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure[J]. Science, 2014, 346(6205): 65-67. |
| [5] |
胡敏章, 张胜军, 金涛勇, 等. 新一代全球海底地形模型BATWHU2020[J]. 测绘学报, 2020, 49(8): 939-954. DOI:.
doi: 10.11947/j.AGCS.2020.20190526 |
|
HU Minzhang, ZHANG Shengjun, JIN Taoyong, et al. A new generation of global bathymetry model BATWHU2020[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(8): 939-954. DOI:.
doi: 10.11947/j.AGCS.2020.20190526 |
|
| [6] | 黄谟涛, 欧阳永忠, 边少锋, 等. 美俄水下重力辅助惯性导航技术发展分析与思考[J]. 武汉大学学报(信息科学版), 2024, 49(11): 1977-1991. |
| HUANG Motao, OUYANG Yongzhong, BIAN Shaofeng, et al. Analysis and reflections on the development of underwater gravity-aided inertial navigation technology in the United States and Russia[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 1977-1991. | |
| [7] | 文汉江, 金涛勇, 朱广彬. 卫星测高原理及应用[M]. 北京: 测绘出版社, 2017. |
| WEN Hanjiang, JIN Taoyong, ZHU Guangbin. Principle and application of satellite altimetry[M]. Beijing: Surveying and Mapping Press, 2017. | |
| [8] | RANEY R K, PORTER D L. WITTEX: an innovative three-satellite radar altimeter concept[C]//Proceedings of 2001 IEEE Transactions on Geoscience and Remote Sensing. [S.l.]: IEEE, 2001: 2387-2391. |
| [9] |
鲍李峰, 许厚泽. 双星伴飞卫星测高模式及其轨道设计[J]. 测绘学报, 2014, 43(7): 661-667. DOI:.
doi: 10.13485/j.cnki.11-2089.2014.0109 |
|
BAO Lifeng, XU Houze. Twin-satellites altimetry mode and its orbit design[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(7): 661-667. DOI:.
doi: 10.13485/j.cnki.11-2089.2014.0109 |
|
| [10] |
孙中苗, 管斌, 翟振和, 等. 海洋卫星测高及其反演全球海洋重力场和海底地形模型研究进展[J]. 测绘学报, 2022, 51(6): 923-934. DOI:.
doi: 10.11947/j.AGCS.2022.20220069 |
|
SUN Zhongmiao, GUAN Bin, ZHAI Zhenhe, et al. Research progress of ocean satellite altimetry and its recovery of global marine gravity field and seafloor topography model[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 923-934. DOI:.
doi: 10.11947/j.AGCS.2022.20220069 |
|
| [11] | 翟振和, 孙中苗, 肖云, 等. 自主海洋测高卫星串飞模式的设计与重力场反演精度分析[J]. 武汉大学学报(信息科学版), 2018, 43(7): 1030-1035, 1128. |
| ZHAI Zhenhe, SUN Zhongmiao, XIAO Yun, et al. Two-satellites tandem mode design and accuracy analysis of gravity field inversion for independent marine altimetry satellite[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1030-1035, 1128. | |
| [12] | 张胜军, 李建成, 褚永海, 等. 基于Cryosat和Jason1 GM数据的垂线偏差计算与分析[J]. 武汉大学学报(信息科学版), 2015, 40(8): 1012-1017. |
| ZHANG Shengjun, LI Jiancheng, CHU Yonghai, et al. Calculation and analysis of the deflection of vertical derived from cryosat and Jason1 GM data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1012-1017. | |
| [13] | MA Zhimin, HAN Guoqi. Reconstruction of the surface inshore labrador current from SWOT sea surface height measurements[J]. Remote Sensing, 2019, 11(11): 1264. |
| [14] | PIE N, SCHUTZ B E. Subcycle analysis for ICESat's repeat groundtrack orbits and application to phasing maneuvers[J]. The Journal of the Astronautical Sciences, 2008, 56(3): 325-340. |
| [15] | GUO Jinyun, GAO Yonggang, HWANG C, et al. A multi-subwaveform parametric retracker of the radar satellite altimetric waveform and recovery of gravity anomalies over coastal oceans[J]. Science China Earth Sciences, 2010, 53(4): 610-616. |
| [16] | ZHANG Shengjun, SANDWELL D T, JIN Taoyong, et al. Inversion of marine gravity anomalies over southeastern China seas from multi-satellite altimeter vertical deflections[J]. Journal of Applied Geophysics, 2017, 137: 128-137. |
| [17] | FAIRHEAD J D. Generating a high-resolution global gravity model for oil exploration: part 2: marine satellite altimeter-derived gravity[J]. The Leading Edge, 2015, 34(5): 566-571. |
| [18] | SANDWELL D T, SMITH W H F. Marine gravity anomaly from Geosat and ERS 1 satellite altimetry[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B5): 10039-10054. |
| [19] | HWANG C, PARSONS B. Gravity anomalies derived from Sea-sat, Geosat, ERS-1 and TOPEX/POSEIDON altimetry and ship gravity: a case-study over the Reykjanes Ridge[J]. Geophysical Journal of International Society. 1995, 122, 511-568. |
| [20] | VERRON J, SENGENES P, LAMBIN J, et al. The SARAL/AltiKa altimetry satellite mission[J]. Marine Geodesy, 2015, 38(): 2-21. |
| [21] | ZHANG Shengjun, SANDWELL D T. Retracking of SARAL/AltiKa radar altimetry waveforms for optimal gravity field recovery[J]. Marine Geodesy, 2017, 40(1): 40-56. |
| [22] | ZHAO Yili, ZHU Jianhua, LIN Mingsen, et al. Assessment of the initial sea surface temperature product of the scanning microwave radiometer aboard on HY-2 satellite[J]. Acta Oceanologica Sinica, 2014, 33(1): 109-113. |
| [23] | 贾永君, 林明森, 张有广. 海洋二号卫星A星雷达高度计在海洋防灾减灾中的应用[J]. 卫星应用, 2018(5): 34-35, 38-39. |
| JIA Yongjun, LIN Mingsen, ZHANG Youguang. Application of Ocean-2 satellite A radar altimeter in marine disaster prevention and mitigation[J]. Satellite Application, 2018(5): 34-35, 38-39. | |
| [24] | HWANG C. Inverse vening meinesz formula and deflection-geoid formula: applications to the predictions of gravity and geoid over the South China Sea[J]. Journal of Geodesy, 1998, 72(5): 304-312. |
| [25] | SANDWELL D T, GARCIA E, SOOFI K, et al. Towards 1 mGal global marine gravity from CryoSat-2, Envisat, and Jason-1[J]. The Leading Edge, 32(8), 892899. |
| [26] | ABULAITIJIANG A, ANDERSEN O B, BARZAGHI R, et al. Coastal marine gravity modelling from satellite altimetry-case study in the Mediterranean[J]. Journal of Geodetic Science, 2021, 11(1): 29-37. |
| [27] | HARTANTO P, HUDA S, PUTRA W, et al. Estimation of marine gravity anomaly model from satellite altimetry data (Case Study: Kalimantan and Sulawesi Waters-Indonesia)[J]. IOP Conference Series: Earth and Environmental Science, 2018, 162: 012038. |
| [28] | ZHU Fengshun, GUO Jinyun, ZHANG Huiying, et al. SDUST2020MGCR: a global marine gravity change rate model determined from multi-satellite altimeter data[J]. Earth System Science Data, 2024, 16(5): 2281-2296. |
| [29] | HWANG C, KAO E C, PARSONS B. Global derivation of marine gravity anomalies from Seasat, Geosat, ERS-1 and TOPEX/POSEIDON altimeter data[J]. Geophysical Journal International, 1998, 134(2): 449-459. |
| [30] | OLGIATI A, BALMINO G, SARRAILH M, et al. Gravity anomalies from satellite altimetry: comparison between computation via geoid heights and via deflections of the vertical[J]. Bulletin Géodésique, 1995, 69(4): 252-260. |
| [31] |
翟振和, 孙中苗, 王兴涛. 全球及局部海洋扰动重力反演的快速解析方法[J]. 测绘学报, 2015, 44(8): 827-830. DOI:.
doi: 10.11947/j.AGCS.2015.20140482 |
|
ZHAI Zhenhe, SUN Zhongmiao, WANG Xingtao. The analytical and quick computation method of disturbing gravity in global and local ocean area[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(8): 827-832. DOI:.
doi: 10.11947/j.AGCS.2015.20140482 |
|
| [32] | WESSEL P, LYONS S. Distribution of large Pacific seamounts from geosat/ERS-1: implications for the history of intraplate volcanism[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B10): 22459-22475. |
| [33] | SHAKO R, FÖRSTE C, ABRYKOSOV O, et al. EIGEN-6C: a high-resolution global gravity combination model including GOCE data[M]. Berlin: Springer, 2014. |
| [1] | 王云鹏, 刘晓刚, 李琦, 李端, 方柳. DQM2022系列超高阶地球重力场模型构建及其精度评估[J]. 测绘学报, 2024, 53(8): 1505-1516. |
| [2] | 韩潇然, 柯樱海, 于金媛, 赵孟杰, 张国庆. 基于SWOT卫星模拟数据的青藏高原湖泊水位与面积测量精度评估[J]. 测绘学报, 2024, 53(5): 823-834. |
| [3] | 翟振和, 孙中苗, 管斌, 马健, 李端. 利用扰动重力数据反演海底地形的高斯曲面函数估计方法[J]. 测绘学报, 2024, 53(2): 231-238. |
| [4] | 孙中苗, 翟振和, 管斌, 阮仁桂, 黄令勇. 双星跟飞测高卫星在轨初步验证[J]. 测绘学报, 2024, 53(2): 207-216. |
| [5] | 李真, 郭金运, 孙中苗, 贾永君, 黄令勇, 孙和平. 基于ICESat-2多波束激光测高数据的全球海洋重力异常反演分析[J]. 测绘学报, 2024, 53(2): 252-262. |
| [6] | 冯进凯, 吴晓平, 王庆宾, 赵东明, 黄子炎. 利用改进的Hotine积分确定地球外部重力场[J]. 测绘学报, 2023, 52(3): 397-404. |
| [7] | 詹银虎, 张超, 李飞战, 骆亚波, 米科峰, 张旭, 张志峰. 基于图像全站仪的天文大地垂线偏差测量及其精度分析[J]. 测绘学报, 2023, 52(2): 175-182. |
| [8] | 郭金运, 金鑫, 边少锋, 常晓涛. 垂线偏差测量的固体潮和海潮改正[J]. 测绘学报, 2022, 51(7): 1215-1224. |
| [9] | 魏子卿. 第二大地边值问题引论[J]. 测绘学报, 2022, 51(6): 797-803. |
| [10] | 马小辉, 孙中苗, 张志斌, 张阿丽, 袁野, 孙正雄, 王宏. 利用射电天线轴线信息测定VLBI站点垂线偏差[J]. 测绘学报, 2021, 50(3): 315-323. |
| [11] | 张胜军, 李建成, 孔祥雪. 基于Laplace方程的垂线偏差法反演全球海域重力异常[J]. 测绘学报, 2020, 49(4): 452-460. |
| [12] | 邢志斌, 李姗姗. 我国陆海统一似大地水准面构建的三维重力矢量法[J]. 测绘学报, 2018, 47(5): 575-583. |
| [13] | 王虎彪, 王勇, 柴华, 鲍李峰. 中国西太平洋海域1'×1'垂线偏差模型及精度评估[J]. 测绘学报, 2017, 46(9): 1073-1079. |
| [14] | 万晓云, 张润宁, 李洋, 刘波, 眭晓虹. 基于球谐函数的重力异常和垂线偏差误差匹配关系[J]. 测绘学报, 2017, 46(6): 706-713. |
| [15] | 王燚, 姜效典. 扰动重力梯度的球冠谐分析建模[J]. 测绘学报, 2017, 46(11): 1802-1811. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||