测绘学报 ›› 2025, Vol. 54 ›› Issue (4): 702-713.doi: 10.11947/j.AGCS.2025.20240280

• 实景三维中国建设 • 上一篇    

基于CVT空间变换的大场景多尺度隐式三维重建

卢一鹏1(), 李雨昊1(), 王海平1, 刘缘2, 董震1, 杨必胜1   

  1. 1.武汉大学测绘遥感信息工程全国重点实验室,湖北 武汉 430079
    2.香港科技大学综合系统与设计学部,香港 999077
  • 收稿日期:2024-07-09 发布日期:2025-05-30
  • 通讯作者: 李雨昊 E-mail:luyipeng@whu.edu.cn;yhaoli@whu.edu.cn
  • 作者简介:卢一鹏(1999—),男,硕士生,研究方向为三维重建。 E-mail:luyipeng@whu.edu.cn
  • 基金资助:
    国家重点研发计划(2022YFB3904105);国家自然科学基金(42130105)

CVT space warping based multi-scale neural implicit surface reconstruction for outdoor scenes

Yipeng LU1(), Yuhao LI1(), Haiping WANG1, Yuan LIU2, Zhen DONG1, Bisheng YANG1   

  1. 1.State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
    2.Division of Integrative Systems and Design, The Hong Kong University of Science and Technology, Hong Kong 999077, China
  • Received:2024-07-09 Published:2025-05-30
  • Contact: Yuhao LI E-mail:luyipeng@whu.edu.cn;yhaoli@whu.edu.cn
  • About author:LU Yipeng (1999—), male, postgraduate, majors in 3D reconstruction. E-mail: luyipeng@whu.edu.cn
  • Supported by:
    The National Key Research and Development Program of China(2022YFB3904105);The National Natural Science Foundation of China(42130105)

摘要:

近年来,以体渲染为基础的三维隐式表达方法在几何重建和辐射重建中取得了较好的效果,这类方法可以在重建几何结构的同时渲染接近实拍的图像。然而室外场景重建中,拍摄图像数据在空间中的不均匀分布现象,导致其重建的模型效果不佳。为解决上述问题,本文提出利用图像采样点表示图像的空间分布,通过采样点三角剖分和质心Voronoi划分迭代策略,将不均匀分布的采样点以迭代的方式变换为均匀分布,实现隐式表达分配的均匀化,从而确保隐式重建模型的质量。本文将这种对采样点进行空间变换的思想进一步嵌入不同范式的隐式表达框架中,实现室外场景的多尺度隐式重建。在室外真实场景的隐式三维重建试验结果表明,本文提出的基于质心Voronoi划分变换可以保证建筑物隐式重建精度,同时有效提升现有隐式表达多尺度的重建结果。

关键词: 摄影测量, 三维重建, 神经隐式表面, 质心Voronoi划分, 新视角合成, 体渲染

Abstract:

In recent years, volumetric rendering-based 3D implicit representation methods have achieved notable success in geometry and radiance reconstruction. These methods can simultaneously reconstruct geometric structures and render photorealistic images. However, in outdoor scene reconstruction, the uneven spatial distribution of captured images often leads to suboptimal reconstruction results. To address this issue, this paper proposes a method that represents the spatial distribution of images using sampling points. Through Delaunay triangulation and a centroidal Voronoi tessellation strategy, unevenly distributed sampling points are iteratively transformed into a uniform distribution, thereby achieving uniform allocation of the implicit representation and ensuring the quality of the implicit reconstruction. Furthermore, this concept of spatial transformation of sampling points is embedded into implicit representation frameworks of different paradigms, enabling multi-scale implicit reconstruction of outdoor scenes. Experimental results on implicit 3D reconstruction of real-world outdoor scenes demonstrate that the proposed centroidal Voronoi tessellation transformation ensures the reconstruction accuracy of building structures and significantly improves the multi-scale reconstruction results of existing implicit representation methods.

Key words: photogrammetry, 3D reconstruction, neural implicit surface, centered Voronoi tessellation, novel view synthesis, volume rendering

中图分类号: