
测绘学报 ›› 2025, Vol. 54 ›› Issue (5): 924-936.doi: 10.11947/j.AGCS.2025.20240235
收稿日期:2024-06-04
修回日期:2025-04-10
出版日期:2025-06-23
发布日期:2025-06-23
通讯作者:
韩斌
E-mail:guangaoxing1215@163.com;njupt.bh@foxmail.com
作者简介:邢广澳(1999—),男,硕士生,研究方向为遥感图像处理。 E-mail:guangaoxing1215@163.com
基金资助:
Guangao XING(
), Guanming LU, Bin HAN(
)
Received:2024-06-04
Revised:2025-04-10
Online:2025-06-23
Published:2025-06-23
Contact:
Bin HAN
E-mail:guangaoxing1215@163.com;njupt.bh@foxmail.com
About author:XING Guangao (1999—), male, postgraduate, majors in remote sensing image processing. E-mail: guangaoxing1215@163.com
Supported by:摘要:
随着遥感技术的日益发展,合成孔径雷达(SAR)图像已成为探测地表水体的主要方法之一。由于存在复杂的干扰,SAR图像中的水体分割仍然是一项具有挑战性的任务。为了实现精确的水体分割,受UNet在分割边缘较弱的小目标时的有效性启发,提出了一种多层注意力融合UNet(MAFUNet)。首先,在编码器和解码器部分之间的跳接连接中加入了空间注意力模块(SAM)和通道注意力模块(CAM),以提取有用的低级和高级特征,弥补降采样带来的语义信息损失。其次考虑到上采样会导致图像特征失真,设计了一种注意力上采样器(AU),保留了图像更多的细节信息,降低了噪声的影响。在解码器最后一层引入多尺度卷积池块(MCPB),以更好地利用上下文信息,捕捉不同尺度的水和陆地特征。此外,还设计了主动轮廓损失作为额外的正则化,采用多层损失函数优化网络,更好地提取层级特征,从而提高模型的分割性能。试验结果表明,MAFUNet优于其他先进的模型,在ALOS PALSAR数据集上的IoU和F1值分别为94.28%和97.67%。
中图分类号:
邢广澳, 卢官明, 韩斌. MAFUNet:结合注意力机制和主动轮廓损失的SAR图像水体分割算法[J]. 测绘学报, 2025, 54(5): 924-936.
Guangao XING, Guanming LU, Bin HAN. MAFUNet: water body segmentation algorithm for SAR images combining attention mechanisms and active contour loss[J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(5): 924-936.
| [1] | ZHAO Bofei, SUI Haigang, ZHU Yihao, et al. Real-time rescue target detection based on UAV imagery for flood emergency response[J]. Journal of Geodesy and Geoinformation Science, 2024, 7(1): 74-89. |
| [2] |
韩斌, 吴一全. SAR图像河流提取的主动轮廓模型的稳健估计算法[J]. 测绘学报, 2020, 49(6): 777-786. DOI .
doi: 10.11947/j.AGCS.2020.20180423 |
|
HAN Bin, WU Yiquan. Robust estimation algorithm of active contour model for river extraction in SAR images[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 777-786. DOI .
doi: 10.11947/j.AGCS.2020.20180423 |
|
| [3] |
杨蕴, 李玉, 赵泉华. 斑点抑制与多分辨率拓扑分析相结合的SAR图像河流水体提取[J]. 测绘学报, 2022, 51(1): 145-158. DOI .
doi: 10.11947/j.AGCS.2022.20190395 |
|
YANG Yun, LI Yu, ZHAO Quanhua. River waterbody extraction from SAR images based on speckle reduction and multi-resolution topological analysis[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(1): 145-158. DOI .
doi: 10.11947/j.AGCS.2022.20190395 |
|
| [4] | 吴庆双, 汪明秀, 申茜, 等. Sentinel-2遥感图像的细小水体提取[J]. 遥感学报, 2022, 26(4): 781-794. |
| WU Qingshuang, WANG Mingxiu, SHEN Qian, et al. Small water body extraction method based on Sentinel-2 satellite multi-spectral remote sensing image[J]. National Remote Sensing Bulletin, 2022, 26(4): 781-794. | |
| [5] | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3431-3440. |
| [6] | RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of 2015 Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing, 2015: 234-241. |
| [7] | BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. |
| [8] | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[EB/OL]. [2024-03-06]. https://arxiv.org/abs/1412.7062v4. |
| [9] | CHEN L C, ZHU Yukun, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of 2018 ECCV. Cham: Springer International Publishing, 2018: 833-851. |
| [10] | KIM M U, OH H, LEE S J, et al. Deep learning based water segmentation using KOMPSAT-5 SAR images[C]//Proceedings of 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. Brussels: IEEE, 2021: 4055-4058. |
| [11] | ZHAO Hengshuang, SHI Jianping, QI Xiaojuan, et al. Pyramid scene parsing network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6230-6239. |
| [12] | LI Juanjuan, WANG Chao, XU Lu, et al. Multitemporal water extraction of Dongting Lake and Poyang Lake based on an automatic water extraction and dynamic monitoring framework[J]. Remote Sensing, 2021, 13(5): 865. |
| [13] | DIRSCHERL M, DIETZ A J, KNEISEL C, et al. A novel method for automated supraglacial lake mapping in Antarctica using Sentinel-1 SAR imagery and deep learning[J]. Remote Sensing, 2021, 13(2): 197. |
| [14] | ZHANG Jinsong, XING Mengdao, SUN Guangcai, et al. Water body detection in high-resolution SAR images with cascaded fully-convolutional network and variable focal loss[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(1): 316-332. |
| [15] | REN Yibin, LI Xiaofeng, YANG Xiaofeng, et al. Development of a dual-attention U-Net model for sea ice and open water classification on SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4010205. |
| [16] |
胡功明, 杨春成, 徐立, 等. 改进U-Net的遥感图像语义分割方法[J]. 测绘学报, 2023, 52(6): 980-989. DOI .
doi: 10.11947/j.AGCS.2023.20210684 |
|
HU Gongming, YANG Chuncheng, XU Li, et al. Improved U-Net remote sensing image semantic segmentation method[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(6): 980-989. DOI .
doi: 10.11947/j.AGCS.2023.20210684 |
|
| [17] |
韩斌, 吴一全. SAR图像河流分割的加权指数区域能量模型[J]. 测绘学报, 2017, 46(9): 1174-1181. DOI .
doi: 10.11947/j.AGCS.2017.20170134 |
|
HAN Bin, WU Yiquan. Weighted exponential region energy model for river segmentation of SAR images[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(9): 1174-1181. DOI .
doi: 10.11947/j.AGCS.2017.20170134 |
|
| [18] | TORRALBA A, RUSSELL B C, YUEN J. LabelMe: online image annotation and applications[J]. Proceedings of the IEEE, 2010, 98(8): 1467-1484. |
| [19] | OKTAY O, SCHLEMPER J, LE FOLGOC L, et al. Attention U-Net: learning where to look for the pancreas[EB/OL]. [2024-03-06]. https://arxiv.org/abs/1804.03999v3. |
| [20] | YU Jie, CAI Yang, LYU Xin, et al. Boundary-guided semantic context network for water body extraction from remote sensing images[J]. Remote Sensing, 2023, 15(17): 4325. |
| [21] | XU Ming, LI Hongping, YUN Yuying, et al. End-to-end pixel-wisely detection of oceanic eddy on SAR images with stacked attention network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 9711-9724. |
| [22] | DING Lei, ZHENG Kai, LIN Dong, et al. MP-ResNet: multipath residual network for the semantic segmentation of high-resolution PolSAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4014205. |
| [23] | YUE Zhenyu, GAO Fei, XIONG Qingxu, et al. A novel attention fully convolutional network method for synthetic aperture radar image segmentation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 4585-4598. |
| [24] | PAN Bin, SHI Xianjian. Fusing ascending and descending time-series SAR images with dual-polarized pixel attention UNet for landslide recognition[J]. Remote Sensing, 2023, 15(23): 5619. |
| [25] | WANG Ying, PENG Yuexing, LI Wei, et al. DDU-Net: dual-decoder-U-net for road extraction using high-resolution remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-12. |
| [26] | FAN Xiangsuo, YAN Chuan, FAN Jinlong, et al. Improved U-Net remote sensing classification algorithm fusing attention and multiscale features[J]. Remote Sensing, 2022, 14(15): 3591. |
| [27] | ZHANG Xinyu, LI Jinjiang, HUA Zhen. MRSE-Net: multiscale residuals and SE-attention network for water body segmentation from satellite images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 5049-5064. |
| [28] | HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141. |
| [29] | LI Xiang, WANG Wenhai, HU Xiaolin, et al. Selective kernel networks[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 510-519. |
| [30] | 付相为, 单慧琳, 吕宗奎, 等. 基于深度学习的合成孔径雷达图像去噪算法[J]. 光学学报, 2023, 43(6): 0610002. |
| FU Xiangwei, SHAN Huilin, LÜ Zongkui, et al. Synthetic aperture radar image denoising algorithm based on deep learning[J]. Acta Optica Sinica, 2023, 43(6): 0610002. |
| [1] | 罗卿莉, 李雪岩, 黄国满, 陈红辉, 薛铭龙, 李健. AOSN:α-最优网络模型的山区单通道SAR高程重建方法[J]. 测绘学报, 2025, 54(5): 888-898. |
| [2] | 杜钊锋, 李国鹏, 刘站科, 尚夏明, 康胜军, 王晓强. 国家重点沉降区域多监测手段综合分析[J]. 测绘学报, 2025, 54(3): 481-492. |
| [3] | 施宏凯, 何秀凤, 吴怿昊, 郑翔天, 宋敏峰. 近海强干扰区域高频全聚焦SAR波形污染识别与海面高精确提取算法[J]. 测绘学报, 2025, 54(2): 272-285. |
| [4] | 邢一波, 韩斌, 鲍秉坤. 基于L1范数混合主动轮廓的河流SAR图像分割[J]. 测绘学报, 2024, 53(8): 1598-1609. |
| [5] | 江利明, 邵益, 周志伟, 马培峰, 王腾. 智能化InSAR数据处理研究进展、挑战与展望[J]. 测绘学报, 2024, 53(6): 1037-1056. |
| [6] | 周苍海, 田镇, 石震, 托坎哈衣那尔·. 时序InSAR与GNSS联合约束下的亚东-谷露断裂运动特征[J]. 测绘学报, 2024, 53(5): 933-945. |
| [7] | 朱珺, 彭葳, 付海强, 欧蔓, 雷缮诚, 张石平. 观测信息不足条件下TanDEM-X InSAR的大范围林下地形反演[J]. 测绘学报, 2024, 53(5): 959-966. |
| [8] | 刘志, 杨淑媛, 于子凡, 冯志玺, 高全伟, 王敏. 基于卷积神经网络的快速SAR自聚焦方法[J]. 测绘学报, 2024, 53(4): 610-619. |
| [9] | 高延东, 贾义琨, 李世金, 陈宇, 李怀展, 郑南山, 张书毕. InSAR相位解缠最大流/最小割权值改进算法[J]. 测绘学报, 2024, 53(4): 644-652. |
| [10] | 黄启灏, 靳国旺, 熊新, 王丽美, 李佳豪. 通道剪枝与知识蒸馏相结合的轻量化SAR目标检测[J]. 测绘学报, 2024, 53(4): 712-723. |
| [11] | 何毅, 杨旺, 朱庆. 基于R2AU-Net的InSAR相位解缠方法[J]. 测绘学报, 2024, 53(3): 435-449. |
| [12] | 项德良, 丁怀跃, 管冬冬, 程建达, 孙晓坤. 结合极化白化滤波和SimSD-CapsuleNet的PolSAR图像配准[J]. 测绘学报, 2024, 53(3): 450-462. |
| [13] | 王媛, 徐华平, 李春升, 曾国兵, 刘爱芳, 葛仕奇. 星载分布式SAR双频乒乓模式测高精度分析[J]. 测绘学报, 2024, 53(3): 463-472. |
| [14] | 岳佳伟, 黄其欢, 刘辉, 马张烽. 离散优化框架下的多基线InSAR相位解缠方法[J]. 测绘学报, 2024, 53(3): 473-481. |
| [15] | 高贤文, 金涛勇, 李建成. 兼顾内陆水体水位时空变化特性的合成孔径雷达波形重跟踪算法[J]. 测绘学报, 2024, 53(2): 217-230. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||