测绘学报 ›› 2025, Vol. 54 ›› Issue (7): 1215-1229.doi: 10.11947/j.AGCS.2025.20240440

• 摄影测量学与遥感 • 上一篇    下一篇

耦合空间分布模式的复杂山区地块作物遥感分类方法

吴田军1(), 李曼嘉2,3, 骆剑承2,3(), 李子琪2,3, 胡晓东4, 郜丽静2, 沈占锋2,3   

  1. 1.长安大学土地工程学院,陕西 西安 710064
    2.中国科学院空天信息创新研究院遥感与数字地球全国重点实验室,北京 100101
    3.中国科学院大学资源与环境学院,北京 100049
    4.浙江科技大学计算机科学与技术学院,浙江 杭州 310023
  • 收稿日期:2024-09-14 修回日期:2025-06-20 出版日期:2025-08-18 发布日期:2025-08-18
  • 通讯作者: 骆剑承 E-mail:tjwu@chd.edu.cn;luojc@aircas.ac.cn
  • 作者简介:吴田军(1986—),男,博士,教授,研究方向为智能遥感与地理时空智能。E-mail:tjwu@chd.edu.cn
  • 基金资助:
    国家自然科学基金(42471394);陕西省自然科学基础研究计划(2025JC-QYCX-035);河北省中央引导地方科技发展资金(236Z0104G)

Farmland-parcel-based crop remote sensing classification method in complex mountainous areas via coupling spatial distribution patterns

Tianjun WU1(), Manjia LI2,3, Jiancheng LUO2,3(), Ziqi LI2,3, Xiaodong HU4, Lijing GAO2, Zhanfeng SHEN2,3   

  1. 1.School of Land Engineering, Chang'an University, Xi'an 710064, China
    2.State Key Laboratory of Remote Sensing and Digital Earth, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
    3.College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
    4.School of Computer Science and Technology, Zhejiang University of Science and Technology, Hangzhou 310023, China
  • Received:2024-09-14 Revised:2025-06-20 Online:2025-08-18 Published:2025-08-18
  • Contact: Jiancheng LUO E-mail:tjwu@chd.edu.cn;luojc@aircas.ac.cn
  • About author:WU Tianjun (1986—), male, PhD, professor, majors in intelligent remote sensing and geographic spatio-temporal intelligence. E-mail: tjwu@chd.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(42471394);Natural Science Basic Research Program of Shaanxi(2025JC-QYCX-035);Central Guidance on Local Science and Technology Development Fund of Hebei Province Under Grant(236Z0104G)

摘要:

地块级作物空间分布地图是精准农业应用的迫切需求。然而,在山区地形起伏、耕地结构破碎、作物类型多样、云雨天气频繁的环境条件下,现有仅依托遥感数据驱动的作物分类模型仍无法满足实际要求,究其原因是对山区农地系统复杂性、遥感成像的不确定性及作物种植的时空唯一性缺乏深刻认知,对空间效应关联知识的深层次融入运用不足。对此,本文聚焦复杂地表作物遥感制图的不确定性分析问题,以地块为核心对象,在图谱协同分析框架下开展作物分类方法研究,旨在耦合空间分布模式建立作物种植空间场景解构、作物生长谱序特征重建、作物类型判别模型增强3个创新链环节。西南山地典型区域的综合试验揭示了引入空间分布模式对于不确定性消减的正向作用,明晰地块精细提取、先验知识约束、特征重组拓展、分类器强化等措施的联合对提升山区作物辨识力的促进意义。本文在理论上深化对复杂地表区作物遥感解译机制的探索,在实践上为农业保险、灾害评估等场景生成更高精度、更具解释性的作物类型图提供示范与技术支撑。

关键词: 地块, 作物遥感分类, 山区, 图谱协同, 空间分布模式

Abstract:

Parcel-wise crop spatial distribution maps are currently in urgent need for precision agriculture applications. However, in mountainous areas with undulating topography, fragmented farmland structure, diverse crop types, and rainy climates, existing data-driven models may not fully satisfy the precision demands. Fundamentally, the causes may lie in the cognitive limits of the complicated agricultural systems and the uncertainty in remote sensing imaging, as well as the ignorance of spatial-temporal effect within the calculation. In response, this research focuses on the uncertainty reduction of remote sensing crop mapping, conducting researches on the introduction of spatial patterns to both the object-level decomposition of the targeted planting area, the reconstruction of the parcel-wise temporal spectral signature, and the crop classification process. The spatial and temporal features get adequately collaborated with land parcels received as basic analysis units. The comprehensive experiment of typical mountainous areas in Southwest China reveals the positive effect of introducing spatial distribution patterns on uncertainty reduction. It clarifies the significance of combining measures such as precise extraction of land parcels, prior knowledge constraints, feature recombination and expansion, classifier reinforcement, etc. to enhance crop identification in mountainous areas. In general, this study deepens the theoretical exploration of the remote sensing interpretation in crop mapping under complex terrain conditions and, in practice, provides a practical framework with higher accuracy and greater interpretability for the scenarios such as agricultural insurance and disaster assessment.

Key words: farmland-parcel, crop remote sensing classification, mountain area, Tu-Pu collaboration, spatial distribution pattern

中图分类号: