测绘学报 ›› 2025, Vol. 54 ›› Issue (9): 1608-1619.doi: 10.11947/j.AGCS.2025.20240323

• 大地测量学与导航 • 上一篇    下一篇

联合稳健S变换与K均值聚类的高崩溃污染率拟稳点选取策略

刘忠贺1(), 李宗春1(), 何华1, 郭迎钢2, 赵文斌3   

  1. 1.信息工程大学地理空间信息学院,河南 郑州 450001
    2.西北核技术研究所,陕西 西安 710024
    3.深圳综合粒子设施研究院,广东 深圳 518000
  • 收稿日期:2024-08-12 修回日期:2025-08-06 出版日期:2025-10-10 发布日期:2025-10-10
  • 通讯作者: 李宗春 E-mail:2936054806@qq.com;13838092876@139.com
  • 作者简介:刘忠贺(1995—),男,博士,讲师,研究方向为精密工程测量。E-mail:2936054806@qq.com
  • 基金资助:
    国家自然科学基金(41974216)

A strategy for selecting quasi-stable points with a high breakdown point by integrating robust S-transform with K-means clustering

Zhonghe LIU1(), Zongchun LI1(), Hua HE1, Yinggang GUO2, Wenbin ZHAO3   

  1. 1.Institute of Geospatial Information, Information Engineering University, Zhengzhou 450001, China
    2.Northwest Institute of Nuclear Technology, Xi'an 710024, China
    3.Institute of Advanced Science Facilities, Shenzhen 518000, China
  • Received:2024-08-12 Revised:2025-08-06 Online:2025-10-10 Published:2025-10-10
  • Contact: Zongchun LI E-mail:2936054806@qq.com;13838092876@139.com
  • About author:LIU Zhonghe (1995—), male, PhD, lecturer, majors in precision engineering surveying. E-mail: 2936054806@qq.com
  • Supported by:
    The National Natural Science Foundation of China(41974216)

摘要:

合理选取拟稳点是变形监测网稳定性分析的关键一环。变形点数量较多甚至过半情况下,现有稳定性分析方法在选取拟稳点时稳健性不足,导致拟稳点选取结果不尽合理。为提高拟稳点选取的准确率,提出了一种联合稳健S变换模型与K均值聚类算法的高崩溃污染率选取策略。首先,将两期变形监测网的同名点作为采样集合,从集合中随机选取部分点作为子集,利用稳健S变换模型求解子集中控制点的点位转换残差。然后,依据点位转换残差,采用K均值聚类算法将控制点分为拟稳点、小变形点及大变形点,并通过拟稳点集与大变形点集的点位转换残差质心差别判断稳健S变换模型是否可行,若稳健S变换模型奏效,则将转换残差小的点标记为拟稳点,从中选取频次较高的点作为备选拟稳点。最后,使用稳健S变换模型处理备选拟稳点以获得可靠的点位转换残差,以此为据,用K均值聚类算法准确选定拟稳点。通过仿真试验和实例分析,本文方法与传统相似变换模型、迭代加权相似变换模型、结合RANSAC算法的相似变换模型及平方型Msplit相似变换模型进行了比较。结果表明,当变形监测网中存在变形点时,本文方法的变形点判别准确率最高,所得控制点位移更加符合实际。在变形点数量过半时,本文方法仍能保持稳健性,具有更高的崩溃污染率。

关键词: 变形监测网, 稳健S变换, K均值聚类, 稳定性分析, 拟稳点

Abstract:

The reasonable selection of quasi-stable points is a key procedure for stability analysis of deformation monitoring networks. In the case of a large number or even more than half of the deformation points, the existing methods have insufficient robustness in selecting quasi-stable points, leading to unreasonable selection results. To improve the correctness of selecting quasi-stable points, a high breakdown point strategy that integrates the robust S-transform model with the K-means clustering algorithm is proposed. First, the residuals of control points are estimated, using the robust S-transform model, from random subsets of homologous points drawn from two-epoch deformation monitoring networks. Then, based on the residuals of points, the K-means clustering method is used to divide the points into quasi-stable, micro-deformation and macro-deformation classes, and the feasibility of the robust S-transform model is assessed via the centroid separation between quasi-stable and macro-deformation clusters. If the robust S-transform model is valid, the points exhibiting minimal residuals are identified as quasi-stable, and the candidate quasi-stable points are selected from the quasi-stable points with high frequency. Finally, the reliable point transformation residuals are acquired by the robust S-transform model from the candidate quasi-stable points, which are used to reasonably determine the quasi-stable points via the K-means clustering algorithm. Through the simulation experiments and a case analysis, the comparisons were made with the traditional similarity transformation model, the iterative weighted similarity transformation model, the similarity transformation model combined with RANSAC algorithm, and the squared Msplit similarity transformation model. The results show that when deformation exists in the network, the proposed method has the highest correctness in identifying the deformation points, and the estimated displacement of control points closely matches the actual situation. In the case where the number of the deformation points exceeds the number of the stable points, the proposed method can still maintain its robustness, which means it has a high breakdown point.

Key words: deformation monitoring network, robust S-transform, K-means clustering, stability analysis, quasi-stable point

中图分类号: