| [1] |
伍贻威, 杨斌, 肖胜红, 等. 原子钟模型和频率稳定度分析方法[J]. 武汉大学学报(信息科学版), 2019, 44(8): 1226-1232.
|
|
WU Yiwei, YANG Bin, XIAO Shenghong, et al. Atomic clock models and frequency stability analyses[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1226-1232.
|
| [2] |
樊礼谦, 焦文海, 孟轶男. 基于Kalman滤波的导航星座集中式守时算法研究[J]. 时间频率学报, 2023, 46(1): 21-31.
|
|
FAN Liqian, JIAO Wenhai, MENG Yinan. Research on centralized time-keeping algorithm for navigation constellations based on Kalman filter[J]. Journal of Time and Frequency, 2023, 46(1): 21-31.
|
| [3] |
FORMICHELLA V, GALLEANI L, SIGNORILE G, et al. Time-frequency analysis of the Galileo satellite clocks: looking for the J2 relativistic effect and other periodic variations[J]. GPS Solutions, 2021, 25(2): 56.
|
| [4] |
LIANG Yifeng, XU Jiangning, LI Fangneng, et al. A VMD-PE-SG denoising method based on K-L divergence for satellite atomic clock[J]. Measurement Science and Technology, 2023, 34(5): 55012.
|
| [5] |
胡超, 王潜心et al.. 顾及BDS-3/GNSS星钟状态的超快速钟差参数估计模型[J]. 测绘学报, 2024, 53(12): 2268-2281. DOI: .
doi: 10.11947/j.AGCS.2024.20240112
|
|
HU Chao, WANG Qianxinet al.. BDS-3/GNSS satellite ultra-rapid clock offsets estimation model with the aid of onboard clock states solution[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(12): 2268-2281. DOI: .
doi: 10.11947/j.AGCS.2024.20240112
|
| [6] |
JIANG Weiping, ZHAO Qile, LI Min, et al. The progress of IGS analysis center at Wuhan university[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(3): 46-57.
|
| [7] |
潘雄, 赵万卓, 张龙杰, 等. 联合半参数与优化BiLSTM的BDS-3钟差超短期预报[J]. 中国惯性技术学报, 2024, 32(10): 985-993.
|
|
PAN Xiong, ZHAO Wanzhuo, ZHANG Longjie, et al. Ultra-short-term prediction method for BDS-3 clock offset by combined semi-parametric and improved BiLSTM models[J]. Journal of Chinese Inertial Technology, 2024, 32(10): 985-993.
|
| [8] |
蒋春华, 朱美珍, 薛慧杰, 等. 基于长短时记忆神经网络的Multi-GNSS卫星钟差建模预报[J]. 大地测量与地球动力学, 2024, 44(3): 257-262.
|
|
JIANG Chunhua, ZHU Meizhen, XUE Huijie, et al. Multi-GNSS satellite clock offset prediction model based on long short-term memory neural network[J]. Journal of Geodesy and Geodynamics, 2024, 44(3): 257-262.
|
| [9] |
TAN Xiaorong, XU Jiangning, HE Hongyang, et al. Short-term satellite clock bias forecast based on complementary ensemble empirical mode decomposition and quadratic polynomial[J]. Survey Review, 2023, 55(389): 127-136.
|
| [10] |
雷雨, 赵丹宁. 附加周期项与随机项补偿的卫星钟差预报算法[J]. 中国惯性技术学报, 2024, 32(10): 994-1000.
|
|
LEI Yu, ZHAO Danning. Satellite clock offset prediction algorithm with additional periodic and stochastic terms compensated[J]. Journal of Chinese Inertial Technology, 2024, 32(10): 994-1000.
|
| [11] |
SHEN Cong, WANG Guocheng, LIU Lintao, et al. Extraction of periodic terms in satellite clock bias based on Fourier basis pursuit bandpass filter[J]. Remote Sensing, 2025, 17(5): 827.
|
| [12] |
XUE Huijie, XU Tianhe, NIE Wenfeng, et al. An enhanced prediction model for BDS ultra-rapid clock offset that combines singular spectrum analysis, robust estimation and gray model[J]. Measurement Science and Technology, 2021, 32(10): 105002.
|
| [13] |
朱祥维, 肖华, 雍少为, 等. 卫星钟差预报的Kalman算法及其性能分析[J]. 宇航学报, 2008, 29(3): 966-970, 1052.
|
|
ZHU Xiangwei, XIAO Hua, YONG Shaowei, et al. The Kalman algorithm used for satellite clock offset prediction and its performance analysis[J]. Journal of Astronautics, 2008, 29(3): 966-970, 1052.
|
| [14] |
杨旭, 王潜心, 吕伟才, 等. 顾及卫星间相关性的Kalman短期钟差预报[J]. 导航定位学报, 2022, 10(3): 59-68.
|
|
YANG Xu, WANG Qianxin, LÜ Weicai, et al. A method of Kalman filter multi-satellite clock offset short-term prediction based on inter-satellite correlation[J]. Journal of Navigation and Positioning, 2022, 10(3): 59-68.
|
| [15] |
郭海荣, 杨元喜, 何海波, 等. 导航卫星原子钟Kalman滤波中噪声方差-协方差的确定[J]. 测绘学报, 2010, 39(2): 146-150.
|
|
GUO Hairong, YANG Yuanxi, HE Haibo, et al. Determination of covariance matrix of Kalman filter used for time prediction of atomic clocks of navigation satellites[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(2): 146-150.
|
| [16] |
宋会杰, 董绍武, 屈俐俐, 等. 基于Sage窗的自适应Kalman滤波用于钟差预报研究[J]. 仪器仪表学报, 2017, 38(7): 1809-1816.
|
|
SONG Huijie, DONG Shaowu, QU Lili, et al. Research on clock difference prediction using adaptive Kalman filter based on Sage window[J]. Chinese Journal of Scientific Instrument, 2017, 38(7): 1809-1816.
|
| [17] |
林旭, 罗志才. 一种新的卫星钟差Kalman滤波噪声协方差估计方法[J]. 物理学报, 2015, 64(8): 18-23.
|
|
LIN Xu, LUO Zhicai. A new noise covariance matrix estimation method of Kalman filter for satellite clock errors[J]. Acta Physica Sinica, 2015, 64(8): 18-23.
|
| [18] |
谭小容, 许江宁, 何泓洋, 等. GM(1, 1)模型初始条件优化及其在GNSS钟差预报中的应用[J]. 大地测量与地球动力学, 2022, 42(9): 919-924.
|
|
TAN Xiaorong, XU Jiangning, HE Hongyang, et al. Optimized initial condition of GM(1, 1) model and its application in GNSS clock offset prediction[J]. Journal of Geodesy and Geodynamics, 2022, 42(9): 919-924.
|
| [19] |
袁德宝, 张建, 张振超, 等. 基于SAFA-FDGM(1, 1)模型的BDS钟差预报[J]. 大地测量与地球动力学, 2021, 41(7): 672-675.
|
|
YUAN Debao, ZHANG Jian, ZHANG Zhenchao, et al. BDS clock error prediction based on SAFA-FDGM(1, 1) model[J]. Journal of Geodesy and Geodynamics, 2021, 41(7): 672-675.
|
| [20] |
WU Yiwei. Determination of theoretical Kalman filter performance for atomic clock estimation through equivalent linear time-invariant systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(6): 7908-7922.
|
| [21] |
王宇谱, 薛申辉, 王威, 等. 基于一次差分预报原理的常用钟差预报模型效果分析[J]. 大地测量与地球动力学, 2021, 41(4): 336-341.
|
|
WANG Yupu, XUE Shenhui, WANG Wei, et al. Effect analysis of common prediction models specific to satellite clock bias based on the principle of single difference prediction[J]. Journal of Geodesy and Geodynamics, 2021, 41(4): 336-341.
|
| [22] |
WANG Guocheng, LIU Lintao, XU Aigong, et al. On the capabilities of the inaction method for extracting the periodic components from GPS clock data[J]. GPS Solutions, 2018, 22(4): 92.
|
| [23] |
WU Yiwei, GONG Hang, ZHU Xiangwei, et al. A clock steering method: using a third-order type 3 DPLL equivalent to a Kalman filter with a delay[J]. Metrologia, 2015, 52(6): 864.
|
| [24] |
WANG Jian, HAN Houzeng, LIU Fei, et al. Performance analysis of GNSS/MIMU tight fusion positioning model with complex scene feature constraints[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(2): 1-13.
|
| [25] |
伍贻威, 龚航, 朱祥维, 等. 原子钟两级驾驭算法及在建立GNSS时间基准中的应用[J]. 电子学报, 2016, 44(7): 1742-1750.
|
|
WU Yiwei, GONG Hang, ZHU Xiangwei, et al. Twice atomic clock steering algorithm and its application in forming a GNSS time reference[J]. Acta Electronica Sinica, 2016, 44(7): 1742-1750.
|
| [26] |
WU Yiwei, GONG Hang, ZHU Xiangwei, et al. A DPLL method applied to clock steering[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(6): 1331-1342.
|
| [27] |
LI Fangneng, LIANG Yifeng, XU Jiangning, et al. Advances in satellite atomic clock technologies for the GNSS[J]. Measurement Science and Technology, 2024, 35(1): 015027.
|
| [28] |
XIE Xin, GENG Tao, ZHAO Qile, et al. Orbit and clock analysis of BDS-3 satellites using inter-satellite link observations[J]. Journal of Geodesy, 2020, 94(7): 64.
|
| [29] |
WANG Xu, CHAI Hongzhou. Developing an innovative high-precision approach to predict medium-term and long-term satellite clock bias[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(1): 47-58.
|
| [30] |
GLANER M F, WEBER R. An open-source software package for precise point positioning: raPPPid[J]. GPS Solutions, 2023, 27(4): 174.
|