| [1] |
李德仁. 展望5G/6G时代的地球空间信息技术[J]. 测绘学报, 2019, 48(12): 1475-1481. DOI: .
doi: 10.11947/j.AGCS.2019.20190437
|
|
LI Deren. Towards geospatial information technology in 5G/6G era[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1475-1481. DOI: .
doi: 10.11947/j.AGCS.2019.20190437
|
| [2] |
李清泉, 张德津, 汪驰升, 等. 动态精密工程测量技术及应用[J]. 测绘学报, 2021, 50(9): 1147-1158. DOI: .
doi: 10.11947/j.AGCS.2021.20210172
|
|
LI Qingquan, ZHANG Dejin, WANG Chisheng, et al. Technology and applications of dynamic and precise engineering surveying[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1147-1158. DOI: .
doi: 10.11947/j.AGCS.2021.20210172
|
| [3] |
CADENA C, CARLONE L, CARRILLO H, et al. Past, present, and future of simultaneous localization and mapping: toward the robust-perception age[J]. IEEE Transactions on Robotics, 2016, 32(6): 1309-1332.
|
| [4] |
邸凯昌, 万文辉, 赵红颖, 等. 视觉SLAM技术的进展与应用[J]. 测绘学报, 2018, 47(6): 770-779. DOI: .
doi: 10.11947/j.AGCS.2018.20170652
|
|
DI Kaichang, WAN Wenhui, ZHAO Hongying, et al. Progress and applications of visual SLAM[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6): 770-779. DOI: .
doi: 10.11947/j.AGCS.2018.20170652
|
| [5] |
王金科, 左星星, 赵祥瑞, 等. 多源融合SLAM的现状与挑战[J]. 中国图象图形学报, 2022, 27(2): 368-389.
|
|
WANG Jinke, ZUO Xingxing, ZHAO Xiangrui, et al. Review of multi-source fusion SLAM: current status and challenges[J]. Journal of Image and Graphics, 2022, 27(2): 368-389.
|
| [6] |
LI Xingxing, ZHANG Xiaohong, NIU Xiaoji, et al. Progress and achievements of multi-sensor fusion navigation in China during 2019—2023[J]. Journal of Geodesy and Geoinformation Science, 2023, 6(3): 102-114. DOI:
doi: 10.11947/j.JGGS.2023.0310
|
| [7] |
李健平, 杨必胜. 头盔式激光扫描系统WHU-Helmet[J]. 同济大学学报(自然科学版), 2022, 50(7): 933-939.
|
|
LI Jianping, YANG Bisheng. A Helmet-based laser scanning system for 3D dynamic mapping[J]. Journal of Tongji University (Natural Science), 2022, 50(7): 933-939.
|
| [8] |
ZHANG Ji, SINGH S. LOAM: LiDAR odometry and mapping in real-time[EB/OL]. [2024-10-10]. https://www.roboticsproceedings.org/rss10/p07.pdf.
|
| [9] |
SHAN Tixiao, ENGLOT B. Lego-loam: lightweight and ground-optimized LiDAR odometry and mapping on variable terrain[C]//Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid: IEEE, 2018: 4758-4765.
|
| [10] |
PAN Yue, XIAO Pengchuan, HE Yujie, et al. MULLS: versatile LiDAR SLAM via multi-metric linear least square[C]//Proceedings of 2021 IEEE International Conference on Robotics and Automation. Xi'an: IEEE, 2021: 11633-11640.
|
| [11] |
CHEN K, LOPEZ B T, AGHA-MOHAMMADI A, et al. Direct LiDAR odometry: fast localization with dense point clouds[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 2000-2007.
|
| [12] |
ZHAO Shibo, GAO Yuanjun, WU Tianhao, et al. SubT-MRS dataset: pushing SLAM towards all-weather environments[C]//Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024: 22647-22657.
|
| [13] |
YE Haoyang, CHEN Yuying, LIU Ming. Tightly coupled 3D LiDAR inertial odometry and mapping[C]//Proceedings of 2019 International Conference on Robotics and Automation. Montreal: IEEE, 2019: 3144-3150.
|
| [14] |
王铉彬, 李星星, 廖健驰, 等. 基于图优化的紧耦合双目视觉/惯性/激光雷达SLAM方法[J]. 测绘学报, 2022, 51(8): 1744-1756. DOI: .
doi: 10.11947/j.AGCS.2022.20210503
|
|
WANG Xuanbin, LI Xingxing, LIAO Jianchi, et al. Tightly-coupled stereo visual-inertial-LiDAR SLAM based on graph optimization[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(8): 1744-1756. DOI: .
doi: 10.11947/j.AGCS.2022.20210503
|
| [15] |
ALMALIOGLU Y, TURAN M, LU C X, et al. Milli-RIO: ego-motion estimation with low-cost millimetre-wave radar[J]. IEEE Sensors Journal, 2021, 21(3): 3314-3323.
|
| [16] |
黄岩, 张慧, 兰吕鸿康, 等. 汽车毫米波雷达信号处理技术综述[J]. 雷达学报, 2023, 12(5): 923-970.
|
|
HUANG Yan, ZHANG Hui, LAN Lühongkang, et al. Overview of signal processing techniques for automotive millimeter-wave radar[J]. Journal of Radars, 2023, 12(5): 923-970.
|
| [17] |
QIN Chao, YE Haoyang, PRANATA C E, et al. Lins: a LiDAR-inertial state estimator for robust and efficient navigation[C]//Proceedings of 2020 IEEE International Conference on Robotics and Automation. Paris: IEEE, 2020: 8899-8906.
|
| [18] |
XU Wei, ZHANG Fu. Fast-lio: a fast, robust LiDAR-inertial odometry package by tightly-coupled iterated Kalman filter[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 3317-3324.
|
| [19] |
XU Wei, CAI Yixi, HE Dongjiao, et al. FAST-LIO2: fast direct LiDAR-inertial odometry[J]. IEEE Transactions on Robotics, 2022, 38(4): 2053-2073.
|
| [20] |
ZHENG Chunran, ZHU Qingyan, XU Wei, et al. FAST-LIVO: fast and tightly-coupled sparse-direct LiDAR-inertial-visual odometry[C]//Proceedings of 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems. Kyoto: IEEE, 2022: 4003-4009.
|
| [21] |
ZHENG Chunran, XU Wei, ZOU Zuhao, et al. FAST-LIVO2: fast, direct LiDAR-inertial-visual odometry[J]. IEEE Transactions on Robotics, 2025, 41: 326-346.
|
| [22] |
DOER C, TROMMER G F. An EKF based approach to radar inertial odometry[C]//Proceedings of 2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems. Karlsruhe: IEEE, 2020: 152-159.
|
| [23] |
ZHUANG Yuan, WANG Binliang, HUAI Jianzhu, et al. 4D iRIOM: 4D imaging radar inertial odometry and mapping[J]. IEEE Robotics and Automation Letters, 2023, 8(6): 3246-3253.
|
| [24] |
HUANG Qiucan, LIANG Yuchen, QIAO Zhijian, et al. Less is more: physical-enhanced radar-inertial odometry[C]//Proceedings of 2024 IEEE International Conference on Robotics and Automation. Yokohama: IEEE, 2024: 15966-15972.
|
| [25] |
GIROD R, HAUSWIRTH M, PFREUNDSCHUH P, et al. A robust baro-radar-inertial odometry M-estimator for multicopter navigation in cities and forests[C]//Proceedings of 2024 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems. Pilsen: IEEE, 2024: 1-8.
|
| [26] |
NISSOV M, KHEDEKAR N, ALEXIS K. Degradation resilient LiDAR-radar-inertial odometry[C]//Proceedings of 2024 IEEE International Conference on Robotics and Automation. Yokohama: IEEE, 2024: 8587-8594.
|
| [27] |
LÜ Jiajun, LANG Xiaolei, XU Jinhong, et al. Continuous-time fixed-lag smoothing for LiDAR-inertial-camera SLAM[J]. IEEE/ASME Transactions on Mechatronics, 2023, 28(4): 2259-2270.
|
| [28] |
WISTH D, CAMURRI M, DAS S, et al. Unified multi-modal landmark tracking for tightly coupled lidar-visual-inertial odometry[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 1004-1011.
|
| [29] |
DEMANTKÉ J, MALLET C, DAVID N, et al. Dimensionality based scale selection in 3D LiDAR point clouds[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012, 3812: 97-102.
|
| [30] |
FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381-395.
|
| [31] |
SOLA J. Quaternion kinematics for the error-state Kalman filter[EB/OL]. [2024-10-10]. https://arxiv.org/abs/1711.02508.
|
| [32] |
GELFAND N, IKEMOTO L, RUSINKIEWICZ S, et al. Geometrically stable sampling for the ICP algorithm[C]//Proceedings of the 4th International Conference on 3D Digital Imaging and Modeling. Banff: IEEE, 2003: 260-267.
|
| [33] |
ZHANG Ji, KAESS M, SINGH S. On degeneracy of optimization-based state estimation problems[C]//Proceedings of 2016 IEEE International Conference on Robotics and Automation. Stockholm: IEEE, 2016: 809-816.
|
| [34] |
DRAISMA J, OTTAVIANI G, TOCINO A. Best rank-k approximations for tensors: generalizing Eckart-Young[J]. Research in the Mathematical Sciences, 2018, 5(2): 27.
|
| [35] |
HUAI Jianzhu, WANG Binliang, ZHUANG Yuan, et al. SNAIL-radar: a large-scale diverse dataset for the evaluation of 4D-radar-based SLAM systems[J/OL]. International Journal of Robotics Research. [2024-10-10]. https://journals.sagepub.com/doi/abs/10.1177/02783649251329048.
|