测绘学报 ›› 2025, Vol. 54 ›› Issue (9): 1677-1686.doi: 10.11947/j.AGCS.2025.20240497

• 摄影测量学与遥感 • 上一篇    下一篇

退化场景稳健的激光雷达、毫米波雷达与惯性融合里程计方法

吴唯同1(), 陈驰2(), 杨必胜2, 何秀凤1   

  1. 1.河海大学地球科学与工程学院,江苏 南京 211100
    2.武汉大学测绘遥感信息工程全国重点实验室,湖北 武汉 430079
  • 收稿日期:2024-12-09 修回日期:2025-07-09 出版日期:2025-10-10 发布日期:2025-10-10
  • 通讯作者: 陈驰 E-mail:weitongwu@hhu.edu.cn;chichen@whu.edu.cn
  • 作者简介:吴唯同(1995—),男,博士,助理研究员,研究方向为多传感器融合同步定位与建图。E-mail:weitongwu@hhu.edu.cn
  • 基金资助:
    国家自然科学基金(42401538);国家重点研发计划(2022YFB3904101)

Robust multi-sensor fusion-based odometry method of LiDAR, millimeter-wave radar and IMU in degraded scenes

Weitong WU1(), Chi CHEN2(), Bisheng YANG2, Xiufeng HE1   

  1. 1.School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China
    2.State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
  • Received:2024-12-09 Revised:2025-07-09 Online:2025-10-10 Published:2025-10-10
  • Contact: Chi CHEN E-mail:weitongwu@hhu.edu.cn;chichen@whu.edu.cn
  • About author:WU Weitong (1995—), male, PhD, assistant researcher, majors in multi-sensor fusion SLAM. E-mail: weitongwu@hhu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(42401538);The National Key Research and Development Program of China(2022YFB3904101)

摘要:

多源传感器融合同步定位与建图(SLAM)是无人系统在退化场景下稳健定位与准确建图的核心。在地下、室内等复杂环境中,由于几何特征约束不足和烟雾粉尘等原因导致感知受限,仅使用激光雷达难以稳健进行SLAM。此外,现有基于滤波框架的异步多传感器状态更新策略易导致系统精度降低。基于迭代误差卡尔曼滤波框架融合惯性测量单元积分测量、激光点到面匹配观测及毫米波雷达速度信息的多源数据,本文提出了融合激光雷达、毫米波雷达与惯性传感器的退化场景稳健里程计方法。针对激光雷达定位退化问题,本文使用毫米波雷达速度估计增加前进方向约束,并采用截断奇异值分解减弱其对系统更新的影响,从而提升异步传感器融合精度。隧道与走廊(有浓雾)等多个退化场景试验表明:基于迭代误差卡尔曼滤波框架的激光惯性里程计(FAST-LIO2)方法在退化区域漂移大,几乎失效,而本文方法在测试数据上的结果均优于FAST-LIO2方法、毫米波雷达惯性里程计和本文方法(直接融合),展现了高稳健性和较高的精度。在走廊数据试验中,本文方法的闭合差与轨迹长度之比为0.9%,相比于本文方法(直接融合)精度提升了一个量级,相比于毫米波雷达惯性里程计方法精度提升了80%;在长约1 km的公路隧道数据试验中,本文方法的轨迹均方根误差为4.57 m,相比于FAST-LIO2方法降低了4.4%。

关键词: 激光雷达, 毫米波雷达, 多源融合SLAM, 传感器定位退化, 卡尔曼滤波

Abstract:

Multi-sensor fusion-based simultaneous localization and mapping (SLAM) is crucial for robust localization and accurate mapping of unmanned systems in degraded environments. In complex environments such as underground and indoors, achieving robust SLAM solely with LiDAR is challenging due to perception limitations caused by insufficient geometric feature constraints and the presence of smoke and dust. Furthermore, existing asynchronous multi-sensor measurement update strategies based on filtering frameworks often compromise system accuracy. To address these challenges, this paper proposes a robust fusion odometry method for degraded scenarios, integrating LiDAR, millimeter-wave radar, and inertial sensors. This method is built upon an iterative error state Kalman filter framework that fuses multi-source data, specifically integrated measurements from the inertial measurement unit, LiDAR point-to-plane matching observations, and velocity estimations from the millimeter-wave radar. To mitigate the degradation in LiDAR localization, the radar velocity measurement is employed to enhance the forward direction constraint, while truncated singular value decomposition reduces the impact of degraded data on system updates, thereby improving the accuracy of asynchronous sensor fusion. This method was validated on multiple degraded scenarios, specifically tunnel and fog-affected corridor environments, using their respective datasets. Results indicated that the FAST-LIO2 method experienced significant drift and nearly failed in degraded areas. In comparison to the FAST-LIO2 method, the millimeter-wave radar inertial odometry method, and the proposed method (direct fusion), the proposed method demonstrated superior robustness and accuracy. Notably, in the corridor data, the ratio of the closure error to trajectory length for the proposed method was 0.9%, an order of magnitude better than the proposed method (direct fusion) and 80% more effective than the millimeter-wave radar-inertial odometry approach. Additionally, in a highway tunnel data of approximately 1 kilometer, the root mean square error of the trajectory for the proposed method was 4.57 m, representing a 4.4% improvement over the FAST-LIO2 method.

Key words: LiDAR, millimeter-wave radar, multi-sensor fusion-based SLAM, localization degradation, Kalman filter

中图分类号: