测绘学报 ›› 2021, Vol. 50 ›› Issue (1): 97-104.doi: 10.11947/j.AGCS.2021.20190463

• 摄影测量学与遥感 • 上一篇    下一篇

高分辨率遥感影像城中村提取的景观语义指数方法

张涛1, 丁乐乐1, 史芙蓉2   

  1. 1. 天津市勘察设计院集团有限公司, 天津 300191;
    2. 武汉大学测绘遥感信息工程国家重点实验室, 武汉 430079
  • 收稿日期:2019-11-18 修回日期:2020-09-15 发布日期:2021-01-15
  • 通讯作者: 丁乐乐 E-mail:dinglelecumt@126.com
  • 作者简介:张涛(1990-),男,博士,工程师,研究方向为遥感图像处理与应用。E-mail:zhangtao437@163.com
  • 基金资助:
    天津市重点研发计划科技支撑重点项目(18YFZCSF00620);天津市重点研发计划院市合作项目(18YFYSZC00120)

Urban villages extraction from high-resolution remote sensing imagery based on landscape semantic metrics

ZHANG Tao1, DING Lele1, SHI Furong2   

  1. 1. Tianjin Survey Design Institute Group Co., Ltd., Tianjin 300191, China;
    2. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
  • Received:2019-11-18 Revised:2020-09-15 Published:2021-01-15
  • Supported by:
    The Key Science and Technology Support Project of Key Research and Development Program of Tianjin (No. 18YFZCSF00620);The CAS-Tianjin Collaborative Project of Key Research and Development Program of Tianjin (No. 18YFYSZC00120)

摘要: 城中村是中国一类特殊的非正式居民区。本文从城中村的物理特点出发,采用景观语义指数描述复杂的城中村场景,提出基于景观语义指数的高分辨率遥感影像城中村提取方法,并采用“分类置信度-反馈”机制进行实际可操作的大范围城中村制图。以广州市核心城区为例,城中村检测的总体精度达到了90%以上。试验结果表明相对于传统的光谱、纹理特征,景观语义指数能够更好地描述城中村的根本形态特点,更准确的城中村提取。此外,“分类置信度-反馈”机制能够充分参考机器学习的分类概率,以有限的人工干预生产更加准确的城中村制图产品。因此,本文方法能够有效应用于大范围的城中村提取与制图。

关键词: 城中村, 高分辨率遥感影像, 景观指数, 场景表达, 土地利用制图

Abstract: Urban villages (UVs), a special type of informal settlement in China. In this study, we proposed a method for UV extraction from high-resolution remote sensing imagery using landscape semantic metrics that can describe the complicated scene of UVs. In addition, an “uncertainty-feedback” strategy was proposed for large-scale practicable UV mapping. The experiment was performed in the urban areas of Guangzhou, with overall accuracy larger than 90%. The results reveal that the landscape semantic metrics have better ability to describe the essential characteristics of UVs compared to the traditional spectral and textural features. Besides, the “uncertainty-feedback” strategy can make full use of the classification reliability output by the machine learning, and produce more accurate UV mapping results with limited manual intervention. Thus, the proposed method can be effectively applied to large-scale UV extraction and mapping.

Key words: urban villages, high-resolution remote sensing imagery, landscape metrics, scene representation, land-use mapping

中图分类号: