测绘学报 ›› 2022, Vol. 51 ›› Issue (7): 1606-1617.doi: 10.11947/j.AGCS.2022.20220109

• 地图学与地理信息 • 上一篇    下一篇

自然资源要素智能解译研究进展与方向

张继贤1, 顾海燕2, 杨懿2, 张鹤1, 李海涛2, 韩文立1, 沈晶1   

  1. 1. 国家测绘产品质量检验测试中心, 北京 100830;
    2. 中国测绘科学研究院, 北京 100830
  • 收稿日期:2022-02-22 修回日期:2022-06-21 发布日期:2022-08-13
  • 通讯作者: 杨懿 E-mail:yangyi@casm.ac.cn
  • 作者简介:张继贤(1965-),男,博士,博士生导师,研究方向为遥感测图、监测理论与技术。E-mail:zhangjx@casm.ac.cn
  • 基金资助:
    中国工程院战略研究与咨询项目(2021-XY-5);中央级公益性科研院所基本科研业务费(AR2123;AR2213)

Research progress and trend of intelligent interpretation for natural resources features

ZHANG Jixian1, GU Haiyan2, YANG Yi2, ZHANG He1, LI Haitao2, HAN Wenli1, SHEN Jing1   

  1. 1. National Quality Inspection and Testing Center for Surveying and Mapping Products, Beijing 100830, China;
    2. Chinese Academy of Surveying and Mapping, Beijing 100830, China
  • Received:2022-02-22 Revised:2022-06-21 Published:2022-08-13
  • Supported by:
    Strategic Research and Consulting Project of Chinese Academy of Engineering(No. 2021-XY-5)|Central Public-Interest Scientific Institution Basal Research Fund (Nos. AR2123|AR2213)

摘要: 自然资源要素解译是自然资源调查监测工作中最基础、投入工作量最大、技术难度最高的工作,存在可解译类别少、要素边界不准不全、类别属性可靠性不高等诸多挑战。本文从自然资源调查监测应用场景出发,首先从要素解译到场景要素耦合的解译范式、数据驱动到知识驱动的解译方法、人工目视到人机协同的解译手段3个方面阐述了自然资源要素自动解译的研究进展;然后探讨了6个重点研究方向及其研究内容,包括场景要素耦合解译、知识驱动语义理解、人机协同智能解译、内外一体与三维环境解译、关键参数精准计算与定量反演,以及高可信质量控制与真实性验证;最后进行了总结与展望,以期为自然资源要素智能解译研究提供思路,推动解决困扰遥感影像自动解译方法在自然资源调查监测业务应用中的瓶颈问题。

关键词: 自然资源调查监测, 智能解译, 场景要素耦合解译, 语义理解, 人机协同, 内外一体解译, 参数反演, 真实性验证

Abstract: Interpretation of natural resources features is the most basic, most widely used, most involved, and most technically difficult task in survey and monitoring work. It faces many challenges such as application understanding, accurate interpretation, and fine interpretation. Starting from the application scenarios of natural resource survey and monitoring, firstly, this article elaborates its research progress from three aspects:scene-features coupling interpretation mode, semantic understanding expression cognition, and human-computer collaborative interpretation methods. Then, it discusses six key research directions and basic ideas, including scene-feature coupling interpretation, knowledge-driven semantic understanding, human-machine collaborative intelligent interpretation, indoor and outdoor integrated and 3D environment interpretation, quantitative inversion of key parameters, high-confidence quality control and authenticity verification. Finally, summaries are given. This paper aims to provide some ideas for the research on intelligent interpretation of natural resources survey and monitoring features, and promote the solution of bottlenecks that plague the application of remote sensing image automatic interpretation methods in natural resource survey and monitoring applications.

Key words: natural resources survey and monitoring, intelligent interpretation, scene-features coupling interpretation, semantic understanding, human-computer collaboration, indoor and outdoor integrated interpretation, parameter inversion, authenticity verification

中图分类号: