测绘学报 ›› 2024, Vol. 53 ›› Issue (4): 589-598.doi: 10.11947/j.AGCS.2024.20230594
• 实时遥感测绘专栏 • 下一篇
收稿日期:
2024-01-02
修回日期:
2024-03-22
发布日期:
2024-05-13
通讯作者:
王子璇
E-mail:wyxie@xidian.edu.cn;zxwang1002@stu.xidian.edu.cn
作者简介:
谢卫莹(1988—),女,博士,教授,博士生导师,主要研究方向为遥感图像在轨处理与分析。E-mail:wyxie@xidian.edu.cn
基金资助:
Weiying XIE(), Zixuan WANG(), Yunsong LI
Received:
2024-01-02
Revised:
2024-03-22
Published:
2024-05-13
Contact:
Zixuan WANG
E-mail:wyxie@xidian.edu.cn;zxwang1002@stu.xidian.edu.cn
About author:
XIE Weiying (1988—), female, PhD, professor, PhD supervisor, majors in on-orbit processing and analysis of remote sensing images. E-mail: wyxie@xidian.edu.cn
Supported by:
摘要:
随着在轨遥感卫星数量的增加及高光谱成像技术的进步,能够获取到的高光谱数据量急剧增长,人类步入了大数据应用和数据驱动的科学发现时代。然而,如此大体量、大幅宽的高光谱数据导致了深度学习算法难以在单节点上学习和推理,为实时高效的信息智能解译带来了极大的挑战。因此,需要综合多星资源分布式协同解析,以解决分块处理带来的块效应。然而,协同处理必然伴随着信息的交互与传输,为进一步降低传输信息量,需要对梯度进行压缩,以缓解分布式学习中的通信瓶颈。本文综合探讨了多种主流的高效通信梯度压缩算法,特别关注其在通信受限的在轨环境下的优劣,并展望了梯度压缩的发展趋势。通过广泛的试验对比,本文全面评估了多种梯度压缩方法在高光谱图像处理中的表现,试验证明不同方法的适用性和性能差异,为未来在实际应用中选择最合适的梯度压缩方法提供了有力的参考。
中图分类号:
谢卫莹, 王子璇, 李云松. 高效通信的在轨分布式高光谱图像处理[J]. 测绘学报, 2024, 53(4): 589-598.
Weiying XIE, Zixuan WANG, Yunsong LI. Efficient-communication on-orbit distributed hyperspectral image processing[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 589-598.
[1] | VERAVERBEKE S, DENNISON P, GITAS I, et al. Hyperspectral remote sensing of fire: state-of-the-art and future perspectives[J]. Remote Sensing of Environment, 2018, 216:105-121. |
[2] | 赵文波. “中国高分” 科技重大专项在对地观测发展历程中的阶段研究[J]. 遥感学报, 2019, 23(6):1036-1045. |
ZHAO Wenbo. Phase research and practice of upgrading earth observation from test application to system effectiveness in China[J]. Journal of Remote Sensing, 2019, 23(6):1036-1045. | |
[3] | HAUT J M, PAOLETTI M E, MORENO-ÁLVAREZ S, et al. Distributed deep learning for remote sensing data interpretation[J]. Proceedings of the IEEE, 2021, 109(8):1320-1349. |
[4] | BI Qi, QIN Kun, ZHANG Han, et al. APDC-net: attention pooling-based convolutional network for aerial scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(9):1603-1607. |
[5] | ZHU R, YAN L, MO N, et al. Attention-based deep feature fusion for the scene classification of high-resolution remote sensing images[J]. Remote Sensing, 2019, 11(17):1996. |
[6] | ZHANG Wei, TANG Ping, ZHAO Lijun. Remote sensing image scene classification using CNN-CapsNet[J]. Remote Sensing, 2019, 11(5):494. |
[7] | XU Kejie, HUANG Hong, LI Yuan, et al. Multilayer feature fusion network for scene classification in remote sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(11):1894-1898. |
[8] | WANG Zeqin, WEN Ming, XU Yuedong, et al. Communication compression techniques in distributed deep learning: a survey[J]. Journal of Systems Architecture, 2023, 142:102927. |
[9] | SEIDE F, FU Hao, DROPPO J, et al. 1-bit stochastic gradient descent and its application to data-parallel distributed training of speech DNNs[C]//Proceedings of the 5th annual conference of the international speech communication association. Singapore: ACM Press, 2014. |
[10] | BERNSTEIN J, WANG Y X, AZIZZADENESHELI K, et al. SignSGD: compressed optimisation for non-convex problems[C]//Proceedings of 2018 International Conference on Machine Learning. New York: PMLR, 2018: 560-569. |
[11] | WEN Wei, XU Cong, YAN Feng, et al. TernGrad: ternary gradients to reduce communication in distributed deep learning[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: ACM Press, 2017: 1508-1518. |
[12] | ALISTARH D, GRUBIC D, LI J Z, et al. QSGD: communication-efficient SGD via gradient quantization and encoding[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: ACM Press, 2017: 1707-1718. |
[13] | ZHENG S, HUANG Z, KWOK J. Communication-efficient distributed blockwise momentum SGD with error-feedback[C]//Proceedings of 2019 Advances in Neural Information Processing Systems. Vancouver: Curran Associates, Inc, 2019. |
[14] | KARIMIREDDY S P, REBJOCK Q, STICH S, et al. Error feedback fixes signsgd and other gradient compression schemes[C]//Proceedings of 2019 International Conference on Machine Learning. California: PMLR, 2019: 3252-3261. |
[15] | FAGHRI F, TABRIZIAN I, MARKOV I, et al. Adaptive gradient quantization for data-parallel SGD[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver: ACM Press, 2020: 3174-3185. |
[16] | GUO J, LIU W, WANG W, et al. Accelerating distributed deep learning by adaptive gradient quantization[C]//Proceedings of 2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Barcelona: IEEE, 2020: 1603-1607. |
[17] | SONG L, ZHAO K, PAN P, et al. Communication efficient SGD via gradient sampling with Bayes prior[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021. |
[18] | LIN Yujun, HAN Song, MAO Huizi, et al. Deep gradient compression: reducing the communication bandwidth for distributed training[C]//Proceedings of 2018 International Conference on Learning Representations. Vancouver: OpenReview.net, 2018: 2458-2467. |
[19] | STICH S U, CORDONNIER J B, JAGGI M. Sparsified SGD with memory[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal: ACM Press, 2018: 4452-4463. |
[20] | ALHAM F A, KENNETH H. Sparse communication for distributed gradient descent [C]//Proceedings of 2017 Conference on Empirical Methods in Natural Language Processing. Copenhagen: Association for Computational Linguistics, 2017: 440-445. |
[21] | CORMEN T H, LEISERSON C E, RIVEST R L, et al. Introduction to algorithms[M]. Cambridge: MIT Press, 2022. |
[22] | DUTTA A, BERGOU E H, ABDELMONIEM A M, et al. On the discrepancy between the theoretical analysis and practical implementations of compressed communication for distributed deep learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4):3817-3824. |
[23] | WANG Huazheng, KIM S, MCCORD-SNOOK E, et al. Variance reduction in gradient exploration for online learning to rank[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. Paris: ACM Press, 2019: 835-844. |
[24] | BOUNEFFOUF D. Exponentiated gradient exploration foractive learning[J]. Computers, 2016, 5(1):1. |
[25] | ABRAHAMYAN L, CHEN Y, BEKOULIS G, et al. Learned gradient compression for distributed deep learning[J]. IEEE Trans Neural Netw Learn Syst, 2022, 33(12):7330-7344. |
[26] | TAO Zeyi, XIA Qi, LI Qun, et al. CE-SGD: communication-efficient distributed machine learning[C]//Proceedings of 2021 IEEE Global Communications Conference. Madrid: IEEE, 2021: 1-7. |
[27] | IVKIN N, ROTHCHILD D, ULLAH E, et al. Communication-efficient distributed SGD with sketching[J]. Advances in Neural Information Processing Systems, 2019, 32. |
[28] | BASU D, DATA D, KARAKUS C, et al. Qsparse-local-SGD: distributed SGD with quantization, sparsification and local computations[J]. Advances in Neural Information Processing Systems, 2019, 32. |
[29] | LU Qu, LIU Wantao, HAN Jizhong, et al. Multi-stage gradient compression: overcoming the communication bottleneck in distributed deep learning[C]//Proceedings of 2018 International Conference on Neural Information Processing. Cham: Springer, 2018: 107-119. |
[30] | SATTLER F, WIEDEMANN S, MULLER K R, et al. Sparse binary compression: towards distributed deep learning with minimal communication[C]//Proceedings of 2019 International Joint Conference on Neural Networks. Budapest: IEEE, 2019: 1-8. |
[31] | HU Kaifan, WU Chengkun, ZHU En. HGC: hybrid gradient compression in distributed deep learning[M]//Advances in Artificial Intelligence and Security. Cham: Springer International Publishing, 2021: 15-27. |
[32] | SHAH S M, LAU V K N. Model compression for communication efficient federated learning [J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34:5937-5951. |
[33] | YAN Guangfeng, LI Tan, HUANG Shaolun, et al. AC-SGD: adaptively compressed SGD for communication-efficient distributed learning[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(9):2678-2693. |
[34] | MORDIDO G, VAN KEIRSBILCK M, KELLER A. Monte carlo gradient quantization[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle: IEEE. 2020: 718-719. |
[35] | WANG Hongyi, SIEVERT S, CHARLES Z, et al. ATOMO: communication-efficient learning via atomic sparsification[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal: ACM Press, 2018: 9872-9883. |
[36] | YU Mingchao, LIN Zhifeng, NARRA K, et al. GradiVeQ: vector quantization for bandwidth-efficient gradient aggregation in distributed CNN training[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal: ACM Press, 2018: 5129-5139. |
[37] | VOGELS T, KARIMIREDDY S P, JAGGI M. PowerSGD: practical low-rank gradient compression for distributed optimization[J]. Advances in Neural Information Processing Systems, 2019, 32. |
[38] | YURTSEVER A, UDELL M, TROPP J, et al. Sketchy decisions: convex low-rank matrix optimization with optimal storage[C]//Proceedings of 2017 Artificial Intelligence and Statistics. Lauderdale: PMLR. 2017. |
[39] | GUNASEKAR S, LEE J, SOUDRY D, et al. Characterizing implicit bias in terms of optimization geometry[C]//Proceedings of 2018 International Conference on Machine Learning. New York: PMLR, 2018: 1832-1841. |
[40] | LI Daixun, XIE Weiying, LI Yunsong, et al. FedFusion: manifold-driven federated learning for multi-satellite and multi-modality fusion[J]. IEEE Transactions onGeoscience and Remote Sensing, 2024, 62:1-13. |
[41] | HONG Danfeng, HAN Zhu, YAO Jing, et al. SpectralFormer: rethinking hyperspectral image classification with transformers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:3130716. |
[42] | DING Kexing, LU Ting, FU Wei, et al. Global-local transformer network for HSI and LiDAR data joint classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:3216319. |
[43] | DENBY B, LUCIA B. Orbital edge computing: nanosatellite constellations as a new class of computer system[C]//Proceedings of the 25th International Conference on Architectural Support for Programming Languages and Operating Systems. Lausanne: ACM Press, 2020: 939-954. |
[44] | ROY S K, DERIA A, HONG Danfeng, et al.Multimodal fusion transformer for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:3286826. |
[45] | SHEN Dunbin, MA Xiaorui, KONG Wenfeng, et al. Hyperspectral target detection based on interpretable representation network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:3302950. |
[1] | 王密, 郭贝贝, 皮英冬, 张致齐, 肖晶, 戴荣凡, 项韶. 珞珈三号01星在轨处理技术及验证[J]. 测绘学报, 2024, 53(4): 599-609. |
[2] | 张艺超, 郑向涛, 卢孝强. 基于层级Transformer的高光谱图像分类方法[J]. 测绘学报, 2023, 52(7): 1139-1147. |
[3] | 杭仁龙, 李成相, 刘青山. 谱间对比学习的高光谱图像无监督特征提取[J]. 测绘学报, 2023, 52(7): 1164-1174. |
[4] | 张蒙蒙, 李伟, 刘欢, 赵旭东, 陶然. 基于形态变换与空间逻辑聚合的高光谱森林树种分类[J]. 测绘学报, 2023, 52(7): 1202-1211. |
[5] | 刘含, 吴成茂, 李昌兴. 全Bregman散度和二部图相结合的高光谱图像稳健聚类算法[J]. 测绘学报, 2023, 52(10): 1749-1759. |
[6] | 李德仁, 王密, 杨芳. 新一代智能测绘遥感科学试验卫星珞珈三号01星[J]. 测绘学报, 2022, 51(6): 789-796. |
[7] | 王密, 仵倩玉. 面向星群的遥感影像智能服务关键问题[J]. 测绘学报, 2022, 51(6): 1008-1016. |
[8] | 张红, 吴智伟, 王继成, 高培超. 高光谱图像分类的Wasserstein配置熵非监督波段选择方法[J]. 测绘学报, 2021, 50(3): 405-415. |
[9] | 张作宇, 廖守亿, 孙大为, 张合新, 王仕成. 稀疏差异先验信息支持的高光谱图像稀疏解混算法[J]. 测绘学报, 2020, 49(8): 1032-1041. |
[10] | 徐君, 王彩玲, 王丽. 采用PPI算法改进的一种数学形态学端元提取方法[J]. 测绘学报, 2019, 48(8): 996-1003. |
[11] | 黄鸿, 陈美利, 王丽华, 李政英. 空-谱协同正则化稀疏超图嵌入的高光谱图像分类[J]. 测绘学报, 2019, 48(6): 676-687. |
[12] | 王密, 杨芳. 智能遥感卫星与遥感影像实时服务[J]. 测绘学报, 2019, 48(12): 1586-1594. |
[13] | 谷雨, 徐英, 郭宝峰. 融合空谱特征和集成超限学习机的高光谱图像分类[J]. 测绘学报, 2018, 47(9): 1238-1249. |
[14] | 侯榜焕, 王锟, 姚敏立, 贾维敏, 王榕. 面向高光谱图像分类的半监督空谱判别分析[J]. 测绘学报, 2017, 46(9): 1098-1106. |
[15] | 王忠美, 杨晓梅, 顾行发. 张量组稀疏表示的高光谱图像去噪算法[J]. 测绘学报, 2017, 46(5): 614-622. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||