测绘学报 ›› 2018, Vol. 47 ›› Issue (5): 644-651.doi: 10.11947/j.AGCS.2018.20170262

• 地图学与地理信息 • 上一篇    下一篇

土地覆盖变化信息自适应抽样策略及其精度评估

梅莹莹, 张景雄   

  1. 1. 武汉大学遥感信息工程学院, 湖北 武汉 430079;
    2. 武汉大学测绘学院, 湖北 武汉 430079
  • 收稿日期:2017-05-17 修回日期:2018-02-26 出版日期:2018-05-20 发布日期:2018-06-01
  • 通讯作者: 张景雄 E-mail:jxzhang@whu.edu.cn
  • 作者简介:梅莹莹(1990-),女,博士,研究方向为地理类别信息与分析。E-mail:myy2014@whu.edu.cn
  • 基金资助:
    国家自然科学基金(41471375)

An Adaptive Sampling Strategy for Land Cover Change Information and Its Accuracy Characterization

MEI Yingying, ZHANG Jingxiong   

  1. 1. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China;
    2. School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China
  • Received:2017-05-17 Revised:2018-02-26 Online:2018-05-20 Published:2018-06-01
  • Supported by:
    The National Natural Science Foundation of China (No.41471375)

摘要: 提出了一种面向土地覆盖变化信息局域精度评估的自适应型抽样策略。结合待研究地图的土地覆盖变化信息局部特征(如土地覆盖变化类别、斑块大小、异质性和优势度),探讨与土地覆盖变化信息精度显著相关的协变量,以预测精度的标准误差作为判断标准,识别需要提高精度预测结果可靠性的区域,以自适应地和逐步定位的方式进行样本采集。基于武汉地区的精度评价结果,自适应的抽取增加100个训练样本使得预测精度的确定系数提高了50.66%,而简单随机抽取的增加样本使得预测精度的确定系数提高了17.22%。试验表明,自适应型抽样策略能显著提高土地覆盖变化信息局域精度预测的抽样效益,减少预测精度的不确定性。模型选择的结果表明,土地覆盖变化类别和优势度指数是最优的协变量组合。

关键词: 土地覆盖变化, 精度, 逻辑回归, 采样

Abstract: An adaptive sampling strategy is proposed for location-specific characterization of accuracy in land cover change information. The local accuracy characterization strategy was established based on local patterns of land cover change maps (e.g land cover change classes, patch size, heterogeneity and dominance), which include exploring covariates significantly relate to accuracy. Standard error of prediction accuracy was used for identifying the area which needs to improve the reliability of prediction accuracy and locating samples adaptively and progressively. The performance of different sampling methods for accuracy prediction was evaluated at the same testing samples in Wuhan. It was indicated that 100 more training samples selected by adaptive sampling strategy lead to about 50.66% increase in prediction accuracy, as measured by sums-of-squares. In comparison, for random sampling, the same increase in training sample size led to about 17.22% increase in prediction accuracy, as measured by sums-of-squares. This confirms that adaptive sampling strategy improves the sampling efficiency while reduces the uncertainty in local accuracies prediction. Model selection reveals that land cover change classes and dominance are the highest significant covariates.

Key words: land cover change, accuracy, logistic regression, sampling

中图分类号: