[1] BEVIS M, BUSINGER S, HERRING TA, et al. GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System[J]. Journal of Geophysical Research: Atmospheres, 1992, 97(D14): 15787-15801. [2] JACOB D. The Role of Water Vapour in the Atmosphere.A Short Overview from a Climate Modeller's Point of View[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2001, 26(6-8): 523-527. [3] CHEN Junyong. On the Error Analysis for the Remote Sensing of Atmospheric Water Vapor by Ground Based GPS[J]. Acta Geodaetica et Cartographica Sinica, 1998, 27(2): 113-118. (陈俊勇. 地基GPS遥感大气水汽含量的误差分析[J]. 测绘学报, 1998, 27(2): 113-118.) [4] ZHANG Baocheng, OU Jikun, YUAN Yunbin, et al. Extracting Precise Atmospheric Propaganda Delays from Multiple Reference Station GPS Networks[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(4): 523-528. (张宝成, 欧吉坤, 袁运斌, 等. 多参考站GPS网提取精密大气延迟[J]. 测绘学报, 2012, 41(4): 523-528.) [5] QIAN Chuang, HE Changyong, LIU Hui. Regional Precise Troposphere Delay Modeling Based on Spherical Cap Harmonic Analysis[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(3): 248-256. (钱闯, 何畅勇, 刘晖. 基于球冠谐分析的区域精密对流层建模[J]. 测绘学报, 2014, 43(3): 248-256.) [6] KOU Leilei, XIANG Maosheng. Effect of Temporal Variation of Atmospheric Refraction on Geosynchronous Circular SAR Focusing Performance[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(9): 917-923. (寇蕾蕾, 向茂生. 大气折射率时间变化对地球同步轨道圆迹SAR聚焦性能的影响[J]. 测绘学报, 2014, 43(9): 917-923.) [7] LI Chao, WEI Heli, WANG Zhenzhu, et al. Statistical Study on the Scale Height of Atmospheric Water Vapor in Hefei Region[J]. Journal of Atmospheric and Environmental Optics, 2008, 3(2): 115-120. (李超, 魏合理, 王珍珠, 等. 合肥地区大气水汽标高变化特征的统计研究[J]. 大气与环境光学学报, 2008, 3(2): 115-120.) [8] ROCKEN C, VAN HOVE T, WARE R. Near Real-time GPS Sensing of Atmospheric Water Vapor[J]. Geophysical Research Letters, 1997, 24(24): 3221-3224. [9] TOMASI C. Determination of the Total Precipitable Water by Varying the Intercept in Reitan's Relationship[J]. Journal of Applied Meteorology, 1981, 20(9): 1058-1069. [10] REITAN C H. Surface Dew Point and Water Vapor Aloft[J]. Journal of Applied Meteorology, 1963, 2(6): 776-779. [11] TOMASI C. Precipitable Water Vapor in Atmospheres Characterized by Temperature Inversions[J]. Journal of Applied Meteorology, 1977, 16(3): 237-243. [12] ZHANG Xuewen. The Vertical Distribution Law of Vapor Pressure in Xinjiang, China[J]. Bimonthly of Xinjiang Meteorology, 2002, 25(4): 1-2, 14. (张学文. 新疆水汽压力的铅直分布规律[J]. 新疆气象, 2002, 25(4): 1-2, 14.) [13] SCHVLER T. The TropGrid2 Standard Tropospheric Correction Model[J]. GPS Solutions, 2014, 18(1): 123-131. [14] YU Shengjie, LIU Lintao, LIANG Xinghui. Influence Analysis of Constraint Conditions on GPS Water Vapor Tomography[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(5): 492-496. (于胜杰, 柳林涛, 梁星辉. 约束条件对GPS水汽层析解算的影响分析[J]. 测绘学报, 2010, 39(5): 492-496.) [15] FLORES A, RUFFINI G, RIUS A. 4D Tropospheric [JP]Tomography Using GPS Slant Wet Delays[J]. Annales Geophysicae, 2000, 18(2): 223-234. [16] FLORES A, DE ARELLANO J V G, GRADINARSKY L P,[JP] et al. Tomography of the Lower Troposphere Using a Small Dense Network of GPS Receivers[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(2): 439-447. [17] DAVIS J L, HERRING T A, SHAPIRO I I, et al. Geodesy[JP] by Radio Interferometry: Effects of Atmospheric Modeling Errors on Estimates of Baseline Length[J]. Radio Science, 1985, 20(6): 1593-1607. [18] WEXLER A. Vapor Pressure Formulation [JP]for Water in the[JP] Range 0 to 100°C: A Revision[J]. Journal of Research of the National Bureau of Standards-A: Physics and Chemistry, 1976, 80A(5-6): 775-785. [19] WEXLER A. Vapor Pressure Formulation for Ice[J]. Journal[JP] of Research of the National Bureau of Standards-A: Physics and Chemistry, 1977, 81A(1): 5-20. [20] LAGLER K, SCHINDELEGGER M, BÖHM J, et al. [JP]GPT2: Empirical Slant Delay Model for Radio Space Geodetic Techniques[J]. Geophysical Research Letters, 2013, 40(6): 1069-1073. [21] YAO Y B, ZHANG B, XU C Q, et al. Improved One-multi-parameter Models that Consider Seasonal and Geographic Variations for Estimating Weighted Mean Temperaturein Ground-based GPS Meteorology[J]. Journal of Geodesy, 2014, 88(3): 273-282. [22] LI W, YUAN Y B, OU J K, et al. A New Global Zenith Tropospheric Delay Model IGGtrop for GNSS Applications[J]. Chinese Science Bulletin, 2012, 57(17): 2132-2139. [23] YAO Yibin, HE Changyong, ZHANG Bao, et al. A New Global Zenith Tropospheric Delay Model GZTD[J]. Chinese Journal of Geophysics, 2013, 56(7): 2218-2227. (姚宜斌, 何畅勇, 张豹, 等. 一种新的全球对流层天顶延迟模型GZTD[J]. 地球物理学报, 2013, 56(7): 2218-2227.) |