[1] GOLUB GH, VAN LOAN C F. An Analysis of the Total Least Squares Problem[J]. SIAM Journal on Numerical Analysis, 1980, 17(6):883-893. [2] XU Peiliang, LIU Jingnan, SHI Chuang. Total Least Squares Adjustment in Partial Errors-in-variables Models:Algorithm and Statistical Analysis[J]. Journal of Geodesy, 2012, 86(8):661-675. [3] VAN HUFFEL S,VANDEWALLE J.The Total Least Squares Problem:Computational Aspects and Analysis[M]. Philadelphia:Society for Industrial and Applied Mathematics, 1991. [4] ADCOCK R J. Note on the Method of Least Squares[J]. The Analyst, 1877, 4(6):183-184. [5] SCHAFFRIN B, WIESER A. On Weighted Total Least-squares Adjustment for Linear Regression[J]. Journal of Geodesy, 2008, 82(7):415-421. [6] SHEN Yunzhong, LI Bofeng, CHEN Yi. An Iterative Solution of Weighted Total Least-squares Adjustment[J]. Journal of Geodesy, 2010, 85(4):229-238. [7] FANG Xing. Weighted Total Least Squares:Necessary and Sufficient Conditions, Fixed and Random Parameters[J]. Journal of Geodesy, 2013, 87(8):733-749. [8] FANG Xing. A Total Least Squares Solution for Geodetic Datum Transformations[J]. Acta Geodaetica et Geophysica, 2014, 49(2):189-207. [9] NEITZELF. Generalization of Total Least-squares on Example of Unweighted and Weighted 2D Similarity Transformation[J]. Journal of Geodesy, 2010, 84(12):751-762. [10] FANG Xing. Weighted Total Least Squares Solutions for Applications in Geodesy[D]. Germany:Leibniz University Hannover, 2011. [11] TONG Xiaohua, JIN Yanmin, ZHANG Songlin, et al. Bias-Corrected Weighted Total Least-squares Adjustment of Condition Equations[J]. Journal of Surveying Engineering,2014, 141(2):0401-0413. [12] 胡川,陈义. 非线性整体最小平差迭代算法[J]. 测绘学报, 2014, 43(7):668-674. DOI:10.13485/j.cnki.11-2089.2014.0111. HU Chuan, CHEN Yi. An Iterative Algorithm for Nonlinear Total Least Squares Adjustment[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(7):668-674.DOI:10.13485/j.cnki.11-2089.2014.0111. [13] ZENG Wenxian, LIU Jingnan, YAO Yibin. On Partial Errors-in-variables Models with Inequality Constraints of Parameters and Variables[J]. Journal of Geodesy, 2015, 89(2):111-119. [14] 曾文宪, 方兴, 刘经南, 等. 附有不等式约束的加权整体最小二乘算法[J]. 测绘学报, 2014, 43(10):1013-1018. DOI:10.13485/j.cnki.11-2089.2014.0173. ZENG Wenxian, FANG Xing, LIU Jingnan, et al. Weighted Total Least Squares Algorithm with Inequality Constraints[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(10):1013-1018. DOI:10.13485/j.cnki.11-2089.2014.0173. [15] FANG Xing. On Non-combinatorial Weighted Total Least Squares with Inequality Constraints[J]. Journal of Geodesy, 2013, 88(8):805-816. [16] FANG Xing. A Structured and Constrained Total Least-Squares Solution with Cross-covariances[J]. Studia Geophysica et Geodaetica, 2014, 58(1):1-16. [17] FANG Xing. Weighted Total Least-squares with Constraints:A Universal Formula for Geodetic Symmetrical Transformations[J]. Journal of Geodesy, 2015, 89(5):459-469.DOI:10.1007/s00190-015-0790-8. [18] ZHANG Songlin, ZHANG Kun. On a Basic Multivariate EIV Model with Linear Equality Constraints[J]. Applied Mathematics and Computation, 2014, 236:247-252. [19] GOLUB GH, HOFFMAN A, STEWART GW. A Generalization of the Eckart-Young-Mirsky Matrix Approximation Theorem[J]. Linear Algebra and Its Applications, 1987, 88-89:317-327. [20] DUNNE BE, WILⅡLAMSONGA. QR-based TLS and Mixed LS-TLS Algorithms with Applications to Adaptive ⅡR Filtering[J]. IEEE Transactions on Signal Processing, 2003, 51(2):386-394. [21] YAN Shijian, FAN Jinyan. The Solution Set of the Mixed LS-TLS Problem[J]. International Journal of Computer Mathematics, 2001, 77(4):545-561. [22] 胡川, 陈义, 彭友. 混合结构总体最小二乘参数估计[J]. 大地测量与地球动力学, 2013, 33(4):56-60. HU Chuan, CHEN Yi, PENG You.On Mixed Structured Total Least Squares for Parameters Estimation[J]. Journal of Geodesy and Geodynamics, 2013, 33(4):56-60. [23] MAHBOUB V, SHARIFI MA. On Weighted Total Least-squares with Linear and Quadratic Constraints[J]. Journal of Geodesy, 2013, 87(3):279-286. [24] 孔建,姚宜斌, 黄承猛. 非线性模型的一阶偏导数确定方法及其在TLS精度评定中的应用[J]. 大地测量与地球动力学, 2011, 31(3):1-5. KONG Jian, YAO Yibin, HUANG Chengmeng. Method for Determining First-order Partial Derivative of Nonlinear Model and Its Application in TLS Accuracy Assessment[J]. Journal of Geodesy and Geodynamics, 2011, 31(3):1-5. [25] KOCH K R. Parameter Estimation and Hypothesis Testing in Linear Models[M]. Berlin:Springer, 1999. [26] 曾文宪, 陶本藻. 三维坐标转换的非线性模型[J]. 武汉大学学报(信息科学版), 2003, 28(5):566-568. ZENG Wenxian, TAO Benzao. Non-linear Adjustment Model of Three-dimensional Coordinate Transformation[J].Geomatics and Information Science of Wuhan University, 2003, 28(5):566-568. |