[1] 孙中苗. 航空重力测量理论、方法及应用研究[D]. 郑州:信息工程大学, 2004. SUN Zhongmiao. Theory, Methods and Applications of Airborne Gravimetry[D]. Zhengzhou:Information Engineering University, 2004. [2] BRUTON A M. Improving the Accuracy and Resolution of SINS/DGPS Airborne Gravimetry[D]. Calgary, Alberta:University of Calgary, 2000. [3] JEKELI C, GARCIA R. GPS Phase Accelerations for Moving-base Vector Gravimetry[J]. Journal of Geodesy, 1997, 71(10):630-639. [4] 肖云, 孙中苗, 程广义. 利用多普勒观测值精确确定运动载体的速度[J]. 武汉测绘科技大学学报, 2000, 25(2):113-118. XIAO Yun, SUN Zhongmiao, CHENG Guangyi. Precise Determination of Velocity for Airborne Gravimetry Using the GPS Doppler Observations[J]. Journal of Wuhan Technical University of Surveying and Mapping, 2000, 25(2):113-118. [5] 张开东. 基于SINS/DGPS的航空重力测量方法研究[D]. 长沙:国防科学技术大学, 2007. ZHANG Kaidong.Research on the Methods of Airborne Gravimetry Based on SINS/DGPS[D].Changsha:National University of Defense Technology, 2007. [6] HEBERT C J, KEITH J, RYAN S, et al. DGPS Kinematic Carrier Phase Signal Simulation Analysis for Precise Aircraft Velocity Determination[C]//Proceedings of the ION GPS-97.Albuquerque:[s.n.], 1997. [7] BRUTON A M, GLENNIE C L, SCHWARZ K P. Differentiation for High-precision GPS Velocity and Acceleration Determination[J]. GPS Solutions, 1999, 2(4):7-21. [8] ZHANG J J.Precise Velocity and Acceleration Determination Using a Standalone GPS Receiver in Real Time[D]. Melbourne:RMIT University, 2007. [9] 范龙, 翟国君, 白鸽. 基于抗差最小二乘估计的载体速度计算方法[J]. 测绘学报, 2011, 40(S1):95-99. FAN Long, ZHAI Guojun, BAI Ge. Calculating the Carrier Velocity Based on Robust Least Square Estimation[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(S1):95-99. [10] 杨元喜. 等价权原理——参数平差模型的抗差最小二乘解[J]. 测绘通报, 1994(6):33-35, 29. YANG Yuanxi.Theory of Equivalent Weight:The Least Squares Solution of Parameter Adjustment Model[J]. Bulletin of Surveying and Mapping, 1994(6):33-35, 29. [11] 彭军还. 非线性M估计研究及其应用[D]. 武汉:武汉大学, 2003. PENG Junhuan.Research on Non-linear M-estimates and Its Application[D]. Wuhan:Wuhan University, 2003. [12] 於宗俦, 李明峰. 多维粗差的同时定位与定值[J]. 武汉测绘科技大学学报, 1996, 21(4):323-329. YU Zongchou, LI Mingfeng. Simultaneous Location and Evaluation of Multi-dimensional Gross Errors[J]. Journal of Wuhan Technical University of Surveying and Mapping, 1996, 21(4):323-329. [13] 杨玲, 沈云中, 楼立志. 基于中位参数初值的等价权抗差估计方法[J]. 测绘学报, 2011, 40(1):28-32. YANG Ling, SHEN Yunzhong, LOU Lizhi. Equivalent Weight Robust Estimation Method Based on Median Parameter Estimates[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(1):28-32. [14] 林旭, 罗志才, 姚朝龙. 常加速度模型的简化自协方差最小二乘法[J]. 测绘学报, 2014, 43(11):1144-1150. DOI:10.13485/j.cnki.11-2089.2014.0143. LIN Xu, LUO Zhicai, YAO Chaolong. Simplified Autocovariance Least-squares Method for Constant Acceleration Model[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(11):1144-1150. DOI:10.13485/j.cnki.11-2089.2014.0143. [15] SINGER R A. Estimating Optimal Tracking Filter Performance for Manned Maneuvering Targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1970, AES-6(4):473-483. [16] SALAZAR D,HERNANDEZ-PAJARES M, JUAN-ZORNOZA J M, et al. EVA:GPS-based Extended Velocity and Acceleration Determination[J]. Journal of Geodesy, 2011, 85(6):329-340. [17] ZHANG Xiaohong, GUO Bofeng, GUO Fei, et al. Influence of Clock Jump on the Velocity and Acceleration Estimation with a Single GPS Receiver Based on Carrier-phase-derived Doppler[J]. GPS Solutions, 2013, 17(4):549-559. [18] SERRANO L, KIM D, LANGLEY R B, et al. A GPS Velocity Sensor:How Accurate Can It Be?-A First Look[C]//Proceedings of the ION NTM. San Diego:Institute of Navigation, 2004:875-885. [19] JIN Shuanggen, WANG J, PARK P H. An Improvement of GPS Height Estimations:Stochastic Modeling[J]. Earth, Planets and Space, 2005, 57(4):253-259. [20] SHUMWAY R H, STOFFER D S. Time Series Analysis and Its Applications:With R Examples[M]. New York:Springer-Verlag, 2011. [21] 杨元喜. 自适应抗差最小二乘估计[J]. 测绘学报, 1996, 25(3):206-211. YANG Yuanxi.Adaptively Robust Least Squares Estimation[J]. Acta Geodaetica et Cartographica Sinica, 1996, 25(3):206-211. |