[1] 朱建军, 丁晓利, 陈永奇. 集成地质、力学信息和监测数据的滑坡动态模型[J]. 测绘学报, 2003, 32(3):261-266. DOI:10.3321/j.issn:1001-1595.2003.03.015. ZHU Jianjun, DING Xiaoli, CHEN Yongqi. Dynamic Landsliding Model with Integration of Monitoring Information and Mechanic Information[J]. Acta Geodaetica et Cartographica Sinca, 2003, 32(3):261-266. DOI:10.3321/j.issn:1001-1595.2003.03.015. [2] 张勤, 黄观文, 王利, 等. 附有系统参数和附加约束条件的GPS城市沉降监测网数据处理方法研究[J]. 武汉大学学报(信息科学版), 2009, 34(3):269-272. ZHANG Qin, HUANG Guanwen, WANG Li, et al. Datum Design Study of GPS Height Monitoring Network with Systematic Parameters and Constraints[J]. Geomatics and Information Science of Wuhan University, 2009, 34(3):269-272. [3] 赵少荣, 陶本藻, 于正林. 论变形测量数据的反演[J]. 测绘学报, 1992, 21(3):161-172. ZHAO Shaorong, TAO Benzao, YU Zhenglin. On the Inversion of Deformation Survey Data[J]. Acta Geodaetica et Cartographica Sinica, 1992, 21(3):161-172. [4] 曾安敏, 杨元喜, 欧阳桂崇. 附加约束条件的序贯平差[J]. 武汉大学学报(信息科学版), 2008, 33(2):183-186. ZENG Anmin, YANG Yuanxi, OUYANG Guichong. Sequential Adjustment with Constraints Among Parameters[J]. Geomatics and Information Science of Wuhan University, 2008, 33(2):183-186. [5] 王乐洋, 许才军, 汪建军. 附有病态约束矩阵的等式约束反演问题研究[J]. 测绘学报, 2009, 38(5):397-401. DOI:10.3321/j.issn:1001-1595.2009.05.004. WANG Leyang, XU Caijun, WANG Jianjun. Research on Equality Constraint Inversion with Ill-posed Constraint Matrix[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(5):397-401. DOI:10.3321/j.issn:1001-1595.2009.05.004. [6] 宋迎春, 左廷英, 朱建军. 带有线性不等式约束平差模型的算法研究[J]. 测绘学报, 2008, 37(4):433-437. DOI:10.3321/j.issn:1001-1595.2008.04.006. SONG Yingchun, ZUO Tingying, ZHU Jianjun. Research on Algorithm of Adjustment Model with Linear Inequality Constrained Parameters[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(4):433-437. DOI:10.3321/j.issn:1001-1595.2008.04.006. [7] 谢建, 朱建军. 等式约束对病态问题的影响及约束正则化方法[J]. 武汉大学学报(信息科学版), 2015, 40(10):1344-1348. DOI:10.13203/j.whugis20130764. XIE Jian, ZHU Jianjun. Influence of Equality Constraints on Ill-conditioned Problems and Constrained Regularization Method[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10):1344-1348. DOI:10.13203/j.whugis20130764. [8] PENG J H, ZHANG H P, SHONG S, et al. An Aggregate Constraint Method for Inequality-constrained Least Squares Problem[J]. Journal of Geodesy, 2006, 79(12):705-713. [9] 冯光财, 朱建军, 陈正阳, 等. 基于有效约束的附不等式约束平差的一种新算法[J]. 测绘学报, 2007, 36(2):119-123. DOI:10.3321/j.issn:1001-1595.2007.02.001. FENG Guangcai, ZHU Jianjun, CHEN Zhengyang, et al. A New Approach to Inequality Constrained Least-squares Adjustment[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(2):119-123. 10.3321/j.issn:1001-1595.2007.02.001 [10] SONG Yingchun, ZHU Jianjun, LI Zhiwei. The Least-squares Estimation of Adjustment Model Constrained by Some Non-negative Parameters[J]. Survey Review, 2010, 42(315):62-71. [11] 朱建军, 谢建. 附不等式约束平差的一种简单迭代算法[J]. 测绘学报, 2011, 40(2):209-212. ZHU Jianjun, XIE Jian. A Simple Iterative Algorithm for Inequality Constrained Adjustment[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(2):209-212. [12] 宋迎春, 谢雪梅, 陈晓林. 不确定性平差模型的平差准则与解算方法[J]. 测绘学报, 2015, 44(2):135-141. DOI:10.11947/j.AGCS.2015.20130213. SONG Yingchun, XIE Xuemei, CHEN Xiaolin. Adjustment Criterion and Algorithm in Adjustment Model with Uncertainty[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(2):135-141. DOI:10.11947/j.AGCS.2015.20130213. [13] 肖运海. 求解大规模优化问题的几种方法[D]. 长沙:湖南大学, 2007. XIAO Yunhai. Research on the Iteration Method for Several Kinds of Consistent and Inconsistent Constrained Matrix Equation[D]. Changsha:Hunan University, 2007. [14] 周斌, 高立, 戴彧虹. 求解大规模带边界约束二次规划问题的单调投影梯度法[J]. 中国科学(A辑):数学, 2006, 36(5):556-570. ZHOU Bin, GAO Li, DAI Yuhong. A Monotonic Ciadient Rrojection Method in Large-scale Quadratic Programming with Boundary Constraints[J]. Scientia Sinica Mathematica, 2006, 36(5):556-570. [15] GAO Yuelin, XU Chengxian, YANG Chuansheng. A Global Optimality Method for Solving the Nonconvex Quadratic Programming Problem with Additional Box Constraints[J]. Chinese Journal of Engineering Mathematics, 2002, 19(1):99-103. [16] 付文龙, 杜廷松, 翟军臣. 基于D. C.分解的一类箱型约束的非凸二次规划的新型分支定界算法[J]. 数学研究, 2013, 46(3):311-318. FU Wenlong, DU Tingsong, ZHAI Junchen. A New Branch and Bound Algorithm Based on D. C. Decomposition about Nonconvex Quadratic Programming with Box Constrained[J]. Journal of Mathematical Study, 2013, 46(3):311-318. DOI:10.3969/j.issn.1006-6837.2013.03.013. [17] 朱克强, 贺力群. 大规模简单界约束的凸二次规划新算法[J]. 北方交通大学学报, 1998, 22(3):98-103. ZHU Keqian, HE Liqun. New Algorithm of Large Scale Convex Quadratic Programs with Simple Bound Constraints[J]. Journal of Northern Jiaotong University, 1998, 22(3):98-103. [18] LIN C J, MORÉ J J. Newton's Method for Large Bound-constrained Optimization Problem[J]. SIAM Journal on Optimization, 1999, 9(4):1100-1127. [19] 张艺. 框式约束凸二次规划问题的内点算法[J]. 高等学校计算数学学报, 2002, 24(2):163-168. ZHANG Yi. An Interior Point Algorithm for Convex Quadratic Programming Problem with Box Constraints[J]. Numerical Mathematics A:Journal of Chinese Universities, 2002, 24(2):163-168. [20] 王晓. 求解一般界约束优化问题的积极集信赖域方法[J]. 中国科学:数学, 2011, 41(4):377-391. WANG Xiao. An Active Set Trust Region Method for General Bound Constrained Optimization[J]. Scientia Sinica Mathematica, 2011, 41(4):377-391. [21] HAGER W W, ZHANG Hongchao. A New Active Set Algorithm for Box Constrained Optimization[J].SIAM Journal on Optimization, 2006, 17(2):526-557. [22] 卢战杰, 魏紫銮. 边界约束二次规划问题的分解方法[J]. 计算数学, 1999, 21(4):475-482. LU Zhanjie WEI Ziluan. Decomposition Method for Quadratic Programming Problem with Box Constrains[J]. Mathematica Numerica Sinica, 1999, 21(4):475-482. [23] 于绍慧. 边界约束凸二次规划的求解[D]. 南京:南京航空航天大学, 2005. YU Shaohui. Algorithms for Bound Constrained Convex Quadratic Programming[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2005. [24] RAO C R. Linear Statistical Inference and Its Applications[M]. New York:John Wiley and Sons, 1973. [25] 谢建, 朱建军. 等式约束病态模型的正则化解及其统计性质[J]. 武汉大学学报(信息科学版), 2013, 38(12):1440-1444. XIE Jian, ZHU Jianjun. A Regularized Solution and Statistical Properties of Ill-posed Problem with Equality Constraints[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12):1440-1444. |