[1] CHI Hong, SUN Guoqing, HUANG Jinliang, et al. National Forest Aboveground Biomass Mapping from ICESat/GLAS Data and MODIS Imagery in China[J]. Remote Sensing, 2015, 7(5):5534-5564. [2] SCHUTZ B E, ZWALLY H J, SHUMAN C A, et al. Overview of the ICESat Mission[J]. Geophysical Research Letters, 2005, 32(21):L21S01. [3] MA Yue, WANG Mingwei, LI Guoyuan, et al. Waveform Model of a Laser Altimeter for an Elliptical Gaussian Beam[J]. Applied Optics, 2016, 55(8):1957-1965. [4] LEFSKY M A, COHEN W B, ACKER S A, et al. LiDAR Remote Sensing of the Canopy Structure and Biophysical Properties of Douglas-Fir Western Hemlock Forests[J]. Remote Sensing of Environment, 1999, 70(3):339-361. [5] NIE Sheng, WANG Cheng, ZENG Hongcheng, et al. A Revised Terrain Correction Method for Forest Canopy Height Estimation Using ICESat/GLAS Data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 108:183-190. [6] SUN G, RANSON K J. Modeling LiDAR Returns from Forest Canopies[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(6):2617-2626. [7] 邢艳秋, 王立海. 基于ICESat-GLAS完整波形的坡地森林冠层高度反演研究——以吉林长白山林区为例[J]. 武汉大学学报(信息科学版), 2009, 34(6):696-700. XING Yanqiu, WANG Lihai. ICESat-GLAS Full Waveform-based Study on Forest Canopy Height Retrieval in Sloped Area:A Case Study of Forests in Changbai Mountains, Jilin[J]. Geomatics and Information Science of Wuhan University, 2009, 34(6):696-700. [8] 曲苑婷, 汪垚, 刘观潮, 等. 基于GLAS激光雷达反演森林生物量[J]. 测绘通报, 2014(11):73-77. DOI:10.13474/j.cnki.11-2246.2014.0367. QU Yuanting, WANG Yao, LIU Guanchao. The Inversion of Forest Biomass Based on GLAS Laser Radar[J]. Bulletin of Surveying and Mapping, 2014(11):73-77. DOI:10.13474/j.cnki.11-2246.2014.0367. [9] CHEN Qi. Retrieving Vegetation Height of Forests and Woodlands over Mountainous Areas in the Pacific Coast Region Using Satellite Laser Altimetry[J]. Remote Sensing of Environment, 2010, 114(7):1610-1627. [10] BYE I J, NORTH P R J, LOS S O, et al. Estimating Forest Canopy Parameters from Satellite Waveform LiDAR by Inversion of the FLIGHT Three-dimensional Radiative Transfer Model[J]. Remote Sensing of Environment, 2017, 188:177-189. [11] GARDNER C S. Ranging Performance of Satellite Laser Altimeters[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5):1061-1072. [12] GARDNER C S. Target Signatures for Laser Altimeters:An Analysis[J]. Applied Optics, 1982, 21(3):448-453. [13] DUONG V H, LINDENBERGH R, PFEIFER N, et al. Single and Two Epoch Analysis of ICESat Full Waveform Data over Forested Areas[J]. International Journal of Remote Sensing, 2008, 29(5):1453-1473. [14] KIMES D S. Radiative Transfer in Homogeneous and Heterogeneous Vegetation Canopies[M]//MYNENI R B, ROSS J. Photon-Vegetation Interactions. Berlin:Springer, 1991:339-388. [15] GASTELLU-ETCHEGORRY J P, ZAGOLSKI F, ROMIER J. A Simple Anisotropic Reflectance Model for Homogeneous Multilayer Canopies[J]. Remote Sensing of Environment, 1996, 57(1):22-38. [16] GASTELLU-ETCHEGORRY J P, DEMAREZ V, PINEL V, et al. Modeling Radiative Transfer in Heterogeneous 3D Vegetation Canopies[C]//Proceedings of the SPIE Volume 2314, Multispectral and Microwave Sensing of Forestry, Hydrology, and Natural Resources, Satellite Remote Sensing. Rome, Italy:SPIE, 1995, 2314:131-156. [17] 吴明钦, 孙玉军, 郭孝玉, 等. 长白落叶松树冠体积和表面积模型[J]. 东北林业大学学报, 2014, 42(5):1-5. WU Mingqin, SUN Yujun, GUO Xiaoyu, et al. Predictive Models of Crown Volume and Crown Surface Area for Korean Larch[J]. Journal of Northeast Forestry University, 2014, 42(5):1-5. [18] LIU Luxia, PANG Yong, LI Zengyuan, et al. Retrieving Structural Parameters of Individual Tree Through Terrestrial Laser Scanning Data[J]. Journal of Remote Sensing, 2014, 18(2):365-370. [19] LAUBHANN D, ECKMULLNER O, STERBA H. Applicability of Non-destructive Substitutes for Leaf Area in Different Stands of Norway Spruce (Picea abies L. Karst.) Focusing on Traditional Forest Crown Measures[J]. Forest Ecology and Management, 2010, 260(9):1498-1506. [20] JACQUEMOUD S, BARET F. PROSPECT:A Model of Leaf Optical Properties Spectra[J]. Remote Sensing of Environment, 1990, 34(2):75-91. [21] ALLEN W A, GAYLE T V, RICHARDSON A J. Plant-canopy Irradiance Specified by the Duntley Equations[J]. Journal of the Optical Society of America, 1970, 60(3):372-376. [22] 岳春宇, 邢坤, 鲍云飞, 等. 以交叉累积剩余熵为准则的星载激光测高仪大光斑波形数据与地形匹配法[J]. 测绘学报, 2017, 46(3):346-352. DOI:10.11947/j.AGCS.2017.20160255. YUE Chunyu, XING Kun, BAO Yunfei, et al. A Matching Method of Space-borne Laser Altimeter Big Footprint Waveform and Terrain Based on Cross Cumulative Residual Entropy[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3):346-352. DOI:10.11947/j.AGCS.2017.20160255. [23] JACQUEMOUD S, BARET F, ANDRIEU B, et al. Extraction of Vegetation Biophysical Parameters by Inversion of the PROSPECT+SAIL Models on Sugar Beet Canopy Reflectance Data. Application to TM and AVIRIS Sensors[J]. Remote Sensing of Environment, 1995, 52(3):163-172. [24] MALTAMO M, PACKALÉN P, YU X, et al. Identifying and Quantifying Structural Characteristics of Heterogeneous Boreal Forests Using Laser Scanner Data[J]. Forest Ecology and Management, 2005, 216(1-3):41-50. [25] HOLLAUS M, AUBRECHT C, HÖFLE B, et al. Roughness Mapping on Various Vertical Scales Based on Full-waveform Airborne Laser Scanning Data[J]. Remote Sensing, 2011, 3(3):503-523. [26] 唐新明, 谢俊峰, 付兴科, 等. 资源三号02星激光测高仪在轨几何检校与试验验证[J]. 测绘学报, 2017, 46(6):714-723. DOI:10.11947/j.AGCS.2017.20160597. TANG Xinming, XIE Junfeng, FU Xingke, et al. ZY3-02 Laser Altimeter On-orbit Geometrical Calibration and Test[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(6):714-723. DOI:10.11947/j.AGCS.2017.20160597. [27] 唐新明, 李国元, 高小明, 等. 卫星激光测高严密几何模型构建及精度初步验证[J]. 测绘学报, 2016, 45(10):1182-1191. DOI:10.11947/j.AGCS.2016.20150357. TANG Xinming, LI Guoyuan, GAO Xiaoming, et al. The Rigorous Geometric Model of Satellite Laser Altimeter and Preliminarily Accuracy Validation[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(10):1182-1191. DOI:10.11947/j.AGCS.2016.20150357. |