[1] 黄令勇. 三频GNSS精密定位理论与方法研究[J]. 测绘学报, 2015, 44(12):1401. DOI:10.11947/j.AGCS.2015.20150395. HUANG Lingyong. Research on the Theory and Algorithm of Triple-frequency GNSS Precise Positioning[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(12):1401. DOI:10.11947/j.AGCS.2015.20150395. [2] 任晓东, 张柯柯, 李星星, 等. BeiDou、Galileo、GLONASS、GPS多系统融合精密单点[J]. 测绘学报, 2015, 44(12):1307-1313. DOI:10.11947/j.AGCS.2015.20140568. REN Xiaodong, ZHANG Keke, LI Xingxing, et al. Precise Point Positioning with Multi-constellation Satellite Systems:BeiDou, Galileo, GLONASS, GPS[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(12):1307-1313. DOI:10.11947/j.AGCS.2015.20140568. [3] HUGENTOBLER U, BEUTLER G. I:Precise Orbit Determination and Gravity Field Modelling:Strategies for Precise Orbit Determination of Low Earth Orbiters Using the GPS[J]. Space Science Reviews, 2003, 108(1-2):17-26. [4] PAIL R. CHAMP-, GRACE-, GOCE-satellite Projects[M]//GRAFAREND E. Encyclopedia of Geodesy. Cham:Springer, 2015:1-11. [5] BOCK H, HUGENTOBLER U, JÄGGI A, et al. Precise Orbit Determination for CHAMP Using an Efficient Kinematic and Reduced-dynamic Procedure[M]//REIGBER C, LVHR H, SCHWINTZER P, et al. Earth Observation with CHAMP. Berlin:Springer, 2005:157-162. [6] XU Tianhe, LI Min, CHEN Kangkang. GOCE Precise Orbit Determination Using Pure Dynamic Method and Reduced Dynamic Method[M]//SUN J, JIAO W, WU H, et al. China Satellite Navigation Conference (CSNC) 2013 Proceedings. Berlin:Springer 2013:211-220. [7] 张小红, 何锡扬, 李星星. TriP软件非差几何法精密定轨精度分析[J]. 武汉大学学报(信息科学版), 2010, 35(11):1327-1330. ZHANG Xiaohong, HE Xiyang, LI Xingxing. Analysis of Undifferenced Kinematic POD for LEOs Using TriP[J]. Geomatics and Information Science of Wuhan University, 2010, 35(11):1327-1330. [8] 赵齐乐. GPS导航星座及低轨卫星的精密定轨理论和软件研究[D]. 武汉:武汉大学, 2004. ZHAO Qile. Research on Precision Orbit Determination Theory and Software of Both GPS Naviagation Constellation and LEO Satellites[D]. Wuhan:Wuhan University, 2004. [9] CHEN J, WANG J. Reduced-dynamic Precise Orbit Determination Based on Helmert Transformation[M]//XU P, LIU J, DERMANIS A. VI Hotine-Marussi Symposium on Theoretical and Computational Geodesy. Berlin:Springer 2008:138-142. [10] JÄGGI A, BEUTLER G, BOCK H, et al. Kinematic and Highly Reduced-dynamic LEO Orbit Determination for Gravity Field Estimation[M]//TREGONING P, RIZOS C. Dynamic Planet. Berlin:Springer, 2007:354-361. [11] VISSER P N A M, VAN DEN IJSSEL J. Aiming at a 1 cm Orbit for Low Earth Orbiters:Reduced-dynamic and Kinematic Precise Orbit Determination[J]. Space Science Reviews, 2003, 108(1-2):27-36. [12] HWANG C, TSENG T P, LIN T, et al. Precise Orbit Determination for the FORMOSAT-3/COSMIC Satellite Mission Using GPS[J]. Journal of Geodesy, 2008, 83(5):477-489. [13] 韩保民, 朱秀英, 柳林涛, 等. 伪随机脉冲估计及其在简化动力学定轨中的应用[J]. 武汉大学学报(信息科学版), 2007, 32(5):466-469. HAN Baomin, ZHU Xiuying, LIU Lintao, et al. Estimation of Pseudo-stochastic Pulses and Their Applications in Reduced-dynamic Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2007, 32(5):466-469. [14] 赵齐乐, 刘经南, 葛茂荣, 等. CHAMP卫星cm级精密定轨[J]. 武汉大学学报(信息科学版), 2006, 31(10):879-882. ZHAO Qile, LIU Jingnan, GE Maorong, et al. Precision Orbit Determination of CHAMP Satellite with Cm-level Accuracy[J]. Geomatics and Information Science of Wuhan University, 2006, 31(10):879-882. [15] LI Jiancheng, ZHANG Shoujian, ZOU Xiancai, et al. Precise Orbit Determination for GRACE with Zero-difference Kinematic Method[J]. Chinese Science Bulletin, 2009, 55(7):600-606. [16] 田英国, 郝金明, 刘伟平, 等. 星载GNSS低轨卫星精密定轨快速解算方法[J]. 大地测量与地球动力学, 2014, 34(1):157-160. TIAN Yingguo, HAO Jinming, LIU Weiping, et al. A Rapid Solution Method on Precise Orbit Determination of LEOs Using GNSS[J]. Journal of Geodesy and Geodynamics, 2014, 34(1):157-160. [17] BEUTLER G, JÄGGI A, HUGENTOBLER U, et al. Efficient Satellite Orbit Modelling Using Pseudo-Stochastic Parameters[J]. Journal of Geodesy, 2006, 80(7):353-372. [18] SPRINGER T A, BEUTLER G, ROTHACHER M. Improving the Orbit Estimates of GPS Satellites[J]. Journal of Geodesy, 1999, 73(3):147-157. [19] BEUTLER G, BROCKMANN E, HUGENTOBLER U, et al. Combining Consecutive Short Arcs into Long Arcs for Precise and Efficient GPS Orbit Determination[J]. Journal of Geodesy, 1996, 70(5):287-299. [20] BEUTLER G. Methods of Celestial Mechanics Volume I:Physical, Mathematical, and Numerical Principles[M]. New York:Springer-Verlag, 2005. [21] JÄGGI A, HUGENTOBLER U, BEUTLER G. Pseudo-stochastic Orbit Modeling Techniques for Low-earth Orbiters[J]. Journal of Geodesy, 2006, 80(1):47-60. [22] BEUTLER G, JÄGGI A, MERVART L, et al. The Celestial Mechanics Approach:Theoretical Foundations[J]. Journal of Geodesy, 2010, 84(10):605-624. [23] 闫志闯. GRACE卫星精密轨道确定与一步法恢复地球重力场[D]. 郑州:信息工程大学, 2015. YAN Zhichuang. Precise Orbit Determination and the Earth Gravity Field Recovery by One Step Method for GRACE[D]. Zhengzhou:Information Engineering University, 2015. [24] 张睿, 涂锐, 卢晓春, 等. 伪随机脉冲参数对BDS卫星定轨精度的影响分析[J]. 大地测量与地球动力学, 2018, 38(3):282-286. ZHANG Rui, TU Rui, LU Xiaochun, et al. Impact of Pseudo-stochastic Pulse Parameters on BDS Satellite Orbit Determination[J]. Journal of Geodesy and Geodynamics, 2018, 38(3):282-286. [25] 张兵兵, 聂琳娟, 吴汤婷, 等. SWARM卫星简化动力学厘米级精密定轨[J]. 测绘学报, 2016, 45(11):1278-1284. DOI:10.11947/j.AGCS.2016.20160284. ZHANG Bingbing, NIE Linjuan, WU Tangting, et al. Centimeter Precise Orbit Determination for SWARM Satellite via Reduced-dynamic Method[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(11):1278-1284. DOI:10.11947/j.AGCS.2016.20160284. |