[1] 徐啟阳, 杨坤涛, 王新兵, 等. 蓝绿激光雷达海洋探测[M]. 北京:国防工业出版社, 2002:290. XU Qiyang, YANG Kuntao, WANG Xinbing, et al. Blue-green LiDAR ocean survey[M]. Beijing:National Defend Industry Press, 2002:290. [2] 刘焱雄, 郭锴, 何秀凤, 等. 机载激光测深技术及其研究进展[J]. 武汉大学学报(信息科学版), 2017, 42(9):1185-1194. LIU Yanxiong, GUO Kai, HE Xiufeng, et al. Research progress of airborne laser bathymetry technology[J]. Geomatics and Information Science of Wuhan University, 2017, 42(9):1185-1194. [3] GUENTHER G, THOMAS R. System design and performance factors for airborne laser hydrography[C]//Proceedings of OCEANS'83. San Francisco, CA:IEEE, 1983:425-430. [4] QUADROS N D, COLLIER P A, FRASER C S. Integration of bathymetric and topographic LiDAR:a preliminary investigation[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008, 37(1):1299-1304. [5] ZHAO Jianhu, ZHAO Xinglei, ZHANG Hongmei, et al. Shallow water measurements using a single green laser corrected by building a near water surface penetration model[J]. Remote Sensing, 2017, 9(5):426. [6] ZHAO Jianhu, ZHAO Xinglei, ZHANG Hongmei, et al. Improved model for depth bias correction in airborne LiDAR bathymetry systems[J]. Remote Sensing, 2017, 9(7):710. [7] JUTZI B, STILLA U. Waveform processing of laser pulses for reconstruction of surfaces in urban areas[C]//Proceedings of the 3rd International Symposium:Remote Sensing and Data Fusion in Urban Areas.[S.l.]:International Archives of Photogrammetry and Remote Sensing, 2005. [8] WAGNER W, ULLRICH A, DUCIC V, et al. Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 60(2):100-112. [9] 王成, 习晓环, 骆社周, 等. 星载激光雷达数据处理与应用[M]. 北京:科学出版社, 2015:52-69. WANG Cheng, XI Xiaohuan, LUO Shezhou, et al. Data processing and application of the space-borne LIDAR[M]. Beijing:Science Press, 2015:52-69. [10] CHAUVE A, MALLET C, BRETAR F, et al. Processing full-waveform LiDAR data:modelling raw signals[C]//Proceedings of 2007 International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Espoo:IAPRS, 2007:102-107. [11] ABDALLAH H, BAILLY J S, BAGHDADI N N, et al. Potential of space-borne LiDAR sensors for global bathymetry in coastal and inland waters[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(1):202-216. [12] ABADY L, BAILLY J S, BAGHDADI N, et al. Assessment of quadrilateral fitting of the water column contribution in LiDAR waveforms on bathymetry estimates[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(4):813-817. [13] HOFTON M A, MINSTER J B, BLAIR J B. Decomposition of laser altimeter waveforms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(4):1989-1996. [14] ZWALLY H J, SCHUTZ B, ABDALATI W, et al. ICEsat's laser measurements of polar ice, atmosphere, ocean, and land[J]. Journal of Geodynamics, 2002, 34(3-4):405-445. [15] ABDALLAH H, BAGHDADI N, BAILLY J S, et al. Wa-LiD:a new LiDAR simulator for waters[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4):744-748. [16] WANG Chisheng, LI Qingquan, LIU Yanxiong, et al. A comparison of waveform processing algorithms for single-wavelength LiDAR bathymetry[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 101(3):22-35. [17] 王丹菂, 徐青, 邢帅, 等. 机载激光测深去卷积信号提取方法的比较[J]. 测绘学报, 2018, 47(2):161-169. DOI:10.11947/j.AGCS.2018.20170501. WANG Dandi, XU Qing, XING Shuai, et al. Comparison of signal extraction method for airborne LiDAR bathymetry based on deconvolution[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(2):161-169. DOI:10.11947/j.AGCS.2018.20170501. [18] WONG H, ANTONIOU A. Characterization and decomposition of waveforms for LARSEN 500 airborne system[J]. IEEE Transactions on Geoscience and Remote Sensing, 1991, 29(6):912-921. [19] PERSSON Å, SÖDERMAN U, TÖPEL J, et al. Visualization and analysis of full-waveform airborne laser scanner data[C]//Proceedings of ISPRS Workshop Laser Scanning 2005. Enschede:ISPRS, 2005:103-108. [20] 李奇, 马洪超. 基于激光雷达波形数据的点云生产[J]. 测绘学报, 2008, 37(3):349-354. DOI:10.3321/j.issn:1001-1595.2008.03.014. LI Qi, MA Hongchao. The study of point-cloud production method based on waveform laser scanner data[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(3):349-354. DOI:10.3321/j.issn:1001-1595.2008.03.014. [21] 李鹏程, 徐青, 邢帅, 等. 采用Levenberg Marquardt的逐步递进波形分解方法[J]. 测绘科学技术学报, 2015, 32(3):256-260, 265. LI Pengcheng, XU Qing, XING Shuai, et al. Step progressive decomposition of full waveform data using Levenberg Marquardt[J]. Journal of Geomatics Science and Technology, 2015, 32(3):256-260, 265. [22] 李鹏程, 徐青, 邢帅, 等. 全局收敛LM的激光雷达波形数据分解方法[J]. 红外与激光工程, 2015, 44(8):2262-2267. LI Pengcheng, XU Qing, XING Shuai, et al. Full-waveform LiDAR data decomposition method based on global convergent lm[J]. Infrared and Laser Engineering, 2015, 44(8):2262-2267. [23] 杨柳, 陈艳萍. 求解非线性方程组的一种新的全局收敛的Levenberg-Marquardt算法[J]. 计算数学, 2008, 30(4):388-396. YANG Liu, CHEN Yanping. A new globally convergent Levenberg-Marquardt method for solving nonlinear system of equations[J]. Mathematica Numerica Sinica, 2008, 30(4):388-396. [24] 刘旺锁, 王平波, 顾雪峰. 混合高斯参数估计的两种EM算法比较[J]. 声学技术, 2014, 33(6):539-543. LIU Wangsuo, WANG Pingbo, GU Xuefeng. Comparison of two EM algorithms for Gaussian mixture parameter estimation[J]. Technical Acoustics, 2014, 33(6):539-543. [25] PARRISH C E, JEONG I, NOWAK R D, et al. Empirical comparison of full-waveform LiDAR algorithms:range extraction and discrimination performance[J]. Photogrammetric Engineering & Remote Sensing, 2011, 77(8):825-838. [26] 马洪超, 李奇. 改进的EM模型及其在激光雷达全波形数据分解中的应用[J]. 遥感学报, 2009, 13(1):35-41. MA Hongchao, LI Qi. Modified EM algorithm and its application to the decomposition of laser scanning waveform data[J]. Journal of Remote Sensing, 2009, 13(1):35-41. [27] 赵泉华, 李红莹, 李玉. 全波形LiDAR数据分解的可变分量高斯混合模型及RJMCMC算法[J]. 测绘学报, 2015, 44(12):1367-1377. DOI:10.11947/j.AGCS.2015.20140501. ZHAO Quanhua, LI Hongying, LI Yu. Gaussian mixture model with variable components for full waveform LiDAR data decomposition and RJMCMC algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(12):1367-1377. DOI:10.11947/j.AGCS.2015.20140501. [28] GREEN P J. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination[J]. Biometrika, 1995, 82(4):711-732. [29] COOK R L, TORRANCE K E. A reflectance model for computer graphics[J]. ACM Transactions on Graphics (TOG), 1982, 1(1):7-24. [30] WRIGHT C W, KRANENBURG C, BATTISTA T A, et al. Depth calibration and validation of the experimental advanced airborne research LiDAR, EAARL-B[J]. Journal of Coastal Research, 2016, 76(sp1):4-17. [31] GUO Kai, XU Wenxue, LIU Yanxiong, et al. Gaussian half-wavelength progressive decomposition method for waveform processing of airborne laser bathymetry[J]. Remote Sensing, 2018, 10(1):35. [32] 叶修松. 机载激光水深探测技术基础及数据处理方法研究[D]. 郑州:信息工程大学, 2010. YE Xiusong. Research on principle and data processing methods of airborne laser bathymetric technique[D]. Zhengzhou:Information Engineering University, 2010. [33] WONG H, ANTONIOU A. One-dimensional signal processing techniques for airborne laser bathymetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(1):35-46. [34] WONG H C, ANTONIOU A. Two-dimensional signal processing techniques for airborne laser bathymetry[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(1):57-66. [35] 程华. 激光雷达回波信号处理技术研究[D]. 成都:中国科学院研究生院(光电技术研究所), 2015. CHENG Hua. Study on the signal processing of LiDAR[D]. Chengdu:The Institute of Optics and Electronics, Chinese Academy of Sciences, 2015. [36] 曹京京. Hausdorff距离的计算原理及其在二维匹配中的应用[D]. 大连:大连理工大学, 2013. CAO Jingjing. The calculation theory of Hausdorff distance and its application to the matching of 2D geometrical objects[D]. Dalian:Dalian University of Technology, 2013. [37] 邓敏, 钮沭联, 李志林. GIS空间目标的广义Hausdorff距离模型[J]. 武汉大学学报(信息科学版), 2007, 32(7):641-645. DENG Min, NIU Shulian, LI Zhilin. A generalized Hausdorff distance for spatial objects in GIS[J]. Geomatics and Information Science of Wuhan University, 2007, 32(7):641-645. [38] YANG Fanlin, SU Dianpeng, MA Yue, et al. Refraction correction of airborne LiDAR bathymetry based on sea surface profile and ray tracing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11):6141-6149. [39] SU Dianpeng, YANG Fanlin, MA Yue, et al. Classification of coral reefs in the South China Sea by combining airborne LiDAR bathymetry bottom waveforms and bathymetric features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2):815-828. [40] IHO. IHO standards for hydrographic surveys[R]. Monaco:International Hydrographic Bureau, 2008. |