[1] 胡自和, 刘坡, 龚建华, 等. 基于虚拟地球的台风多维动态可视化系统的设计与实现[J]. 武汉大学学报(信息科学版), 2015, 40(10): 1299-1305. HU Zihe, LIU Po, GONG Jianhua, et al. Design and implementation of multidimensional and animated visualization system for typhoon on virtual globes[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1299-1305. [2] 梅鸿辉, 陈海东, 肇昕, 等. 一种全球尺度三维大气数据可视化系统[J]. 软件学报, 2016, 27(5): 1140-1150. MEI Honghui, CHEN Haidong, ZHAO Xin, et al. Visualization system of 3D global scale meteorological data[J]. Journal of Software, 2016, 27(5): 1140-1150. [3] SAMSEL F, PETERSEN M, ABRAM G, et al. Visualization of ocean currents and eddies in a high-resolution global ocean-climate model[C]//Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis.At Austin, TX, 2015. [4] HOFMANN L, RIECK B, SADLO F. Visualization of 4D vector field topology[J]. Computer Graphics Forum, 2018, 37(3): 301-313. [5] 徐华勋. 复杂流场特征提取与可视化方法研究[D]. 长沙: 国防科学技术大学, 2011. XU Huaxun. Extraction and visualization for complex flow field features[D]. Changsha: National University of Defense Technology, 2011. [6] 徐华勋, 李思昆, 蔡勋, 等. 基于特征的矢量场自适应纹理绘制[J]. 中国科学: 信息科学, 2013, 43(7): 872-886. XU Huaxun, LI Sikun, CAI Xun, et al. Feature-based adaptive texture visualization for vector field[J]. Scientia Sinica Informationis, 2013, 43(7): 872-886. [7] 王怀晖. 基于特征的复杂流场纹理可视化关键技术研究[D]. 长沙: 国防科学技术大学, 2015. WANG Huaihui. Research on key techniques of feature-based texture visualization for complex flow field[D]. Changsha: National University of Defense Technology, 2015. [8] 张海超. 基于特征的复杂流场可视化方法研究与应用[D]. 大连: 大连理工大学, 2016. ZHANG Haichao. Research and application of the complex flow field visualization based on features[D]. Dalian: Dalian University of Technology, 2016. [9] 巴振宇, 单桂华, 刘俊, 等. 一种基于特征信息种子点选取的多层次流线可视化[J]. 计算机辅助设计与图形学学报, 2016, 28(1): 32-40. BA Zhenyu, SHAN Guihua, LIU Jun, et al. A feature-based seeding method for multi-level flow visualization[J]. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(1): 32-40. [10] 廖忠云. 基于拓扑学理论的海洋流场时空特征分析与可视化表达研究[D]. 泰安: 山东科技大学, 2017. LIAO Zhongyun. The research of spatial-temporal feature analysis and visualization on marine flow field based on topological theory[D]. Taian: Shandong University of Science and Technology, 2017. [11] 刘占平, 汪国平, 董士海. ProLIC: 一种累进的矢量场可视化方法[J]. 系统仿真学报, 2001, 13(S1): 256-259. LIU Zhanping, WANG Guoping, DONG Shihai. ProLIC: a progressive method for vector field visualization[J]. Journal of System Simulation, 2001, 13(S1): 256-259. [12] CABRAL B, LEEDOM L. Imaging vector fields using line integral convolution[C]//Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques.Anaheim, CA, USA:ACM, 1993. [13] STALLING D, HEGE H C. Fast and resolution independent line integral convolution[C]//Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques. Los Angeles, CA, USA:ACM, 1995. [14] KIU M H, BANKS D C. Multi-frequency noise for LIC[C]//Proceedings of Seventh Annual IEEE Visualization’96. San Francisco: IEEE, 1996: 121-126. [15] OKADA A, KAO D L. Enhanced line integral convolution with flow feature detection[C]//Proceedings of SPIE 3017, Visual Data Exploration and Analysis IV. San Jose, CA, United States:SPIE, 1997: 206-218. [16] SHEN Hanwei, KAO D L. UFLIC: a line integral convolution algorithm for visualizing unsteady flows[C]//Proceedings. Visualization’97 (Cat. No. 97CB36155). Phoenix: IEEE, 1997: 317-322. [17] HEGE H C, STALLING D. Fast LIC with piecewise polynomial filter kernels[M]. HEGE H C, POLTHIER K. Mathematical Visualization. Berlin, Heidelberg: Springer, 1998: 295-314. [18] MATVIENKO V, KRVGER J. Explicit frequency control for high-quality texture-based flow visualization[C]//Proceedings of 2015 IEEE Scientific Visualization Conference (SciVis). Chicago: IEEE, 2015: 41-48. [19] TANG Bin, SHI Hongxia. Intelligent vector field visualization based on line integral convolution[J]. Cognitive Systems Research, 2018, 52: 828-842. [20] FALK M, WEISKOPF D. Output-sensitive 3D line integral convolution[J]. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(4): 820-834. [21] XU Lijie, LEE T, SHEN Hanwei. An information-theoretic framework for flow visualization[J]. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(6): 1216-1224. [22] 张沙, 解利军, 桂立业, 等. 基于信息熵的流线质量评估和布局算法[J]. 计算机工程与应用, 2015, 51(22): 181-186. ZHANG Sha, XIE Lijun, GUI Liye, et al. Method of streamlines quality evaluation and seeds placement based on information entropy[J]. Computer Engineering and Applications, 2015, 51(22): 181-186. [23] 高茂庭, 董红周, 周凡. 基于非线性渐变式颜色映射的LIC改进算法[J]. 计算机应用研究, 2019, 36(10): 1-9. (请核对页码) GAO Maoting, DONG Hongzhou, ZHOU Fan. Improved LIC algorithm based on nonlinear gradual-changing color mapping[J]. Application Reasearch of Computers, 2019, 36(10): 1-9. [24] 陈丁, 万刚, 王龙, 等. 基于GPU的二维矢量场LIC算法研究[J]. 测绘工程, 2015, 24(3): 26-30. CHEN Ding, WAN Gang, WANG Long, et al. GPU-based LIC algorithm for 2D-vector field visualization[J]. Engineering of Surveying and Mapping, 2015, 24(3): 26-30. [25] 周迪斌, 王康健, 解利军, 等. 基于矢量线强化的增强型2维流场实时绘制[J]. 中国图象图形学报, 2008, 13(9): 1804-1811. ZHOU Dibin, WANG Kangjian, XIE Lijun, et al. Enhanced real-time 2D flow visualization based on flow lines enhancement[J]. Journal of Image and Graphics, 2008, 13(9): 1804-1811. |