[1] LIN Zongjian, ZHANG Yonghong. Measurement of Information and Uncertainty of Remote Sensing and GIS Data[J]. Geomatics and Information Science of Wuhan University, 2006, 31(7): 569-572. (林宗坚, 张永红. 遥感与地理信息系统数据的信息量及不确定性[J]. 武汉大学学报: 信息科学版, 2006, 31(7): 569-572.) [2] SHANNON C E. A Mathematical Theory of Communication[J]. Bell System Technical Journal, 1948, 27(3): 379-423. [3] WANG Zhanhong. A Research on the Metric Model for Remote Sensing Entropy and Quality[D]. Wuhan: Wuhan University, 2004. (王占宏. 遥感影像信息量及质量度量模型的研究[D]. 武汉: 武汉大学, 2004.) [4] NARAYANAN R M, PONNAPPAN S K, REICHENBACH S E. Effects of Uncorrelated and Correlated Noise on Image Information Content[J]. Geoscience and Remote Sensing Symposium, 2001, 4(7): 1898-1900. [5] CHEN Yan. Information-Theoretic Research on Information Contents in Remotely Sensed Images[D]. Wuhan; Wuhan University, 2010. (陈艳. 基于信息理论的遥感图像信息度量[D]. 武汉: 武汉大学, 2010.) [6] LIU Yanfang, LAN Zeying, LIU Yang, et al. Multi-scale Evaluation Method for Uncertainty of Remote Sensing Classification Based on Hybrid Entropy Model[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(1): 82-87. (刘艳芳, 兰泽英, 刘洋, 等. 基于混合熵模型的遥感分类不确定性的多尺度评价方法研究[J]. 测绘学报, 2009, 38(1): 82-87.) [7] HAN Peng, GONG Jianya, LI Zhilin. A New Approach for Choice of Optimal Spatial Scale in Image Classification Based on Entropy[J]. Geomatics and Information Science of Wuhan University, 2008, 33(7): 676-679. (韩鹏, 龚健雅, 李志林. 基于信息熵的遥感分类最优空间尺度选择方法[J]. 武汉大学学报: 信息科学版, 2008, 33(7): 676-679.) [8] XU Han, YAN Qin, XU Banlin, et al. The Best Band Selection and Quality Assessment of Multisource Remote Sensing Image Fusion[J]. Science of Surveying and Mapping, 2007, 32(3): 72-74. (许菡, 燕琴, 徐泮林, 等. 多源遥感影像融合最佳波段选择及质量评价研究[J]. 测绘科学, 2007, 32(3): 72-74.) [9] BLACKNELL D, OLIVER C J. Information Content of Coherent Images[J]. Journal of Physics D: Applied Physics, 1993, 26(9): 1364-1370. [10] NARAYANAN R M, DESETTY M K, REICHENBACH S E. Effect of Spatial Resolution on Information Content Characterization in Remote Sensing Imagery Based on Classification Accuracy[J]. International Journal of Remote Sensing, 2002, 23(3): 537-553. [11] AIAZZI B, BARONTI S, SANTURRI L, et al. Information-Theoretic Assessment of Multi-dimensional Signals[J]. Signal Processing, 2005, 85(5): 903-916. [12] RAZLIGHI Q R, KEHTARNAVAZ N, NOSRATINIA A. Computation of Image Spatial Entropy Using Quadrilateral Markov Random Field[J].IEEE Transactions on Image Processing, 2009, 18(12): 2629-2639. [13] WOODCOCK C E, STRAHLER A H, JUPP D L B. The Use of Variograms in Remote Sensing: I. Scene Models and Simulated Images[J]. Remote Sensing of Environment, 1988, 25(3): 323-348. [14] WOODCOCK C E, STRAHLER A H, JUPP D L B. The Use of Variograms in Remote Sensing: II. Real Digital Images[J]. Remote Sensing of Environment, 1988, 25(3): 349-379. [15] CURRAN P J. The Semivariogram in Remote Sensing—An Introduction[J]. Remote Sensing of Environment, 1988, 24(3): 493-507. [16] COVER T M, THOMAS J A. Elements of Information Theory[M]. 2nd ed.New York: John Wiley & Sons Inc., 2006. [17] FU Zuyun. Information Theory—Basic Theory and Application[M]. Beijing: Publishing House of Electronics Industry, 2001. (傅祖芸. 信息论——基础理论与应用[M]. 北京: 电子工业出版社, 2001.) [18] ZHANG Renlin. Penetration of Information Theory to Science of Surveying and Mapping[J]. Science of Surveying and Mapping, 1994(2): 28-31. (张仁霖. 信息论向测绘科学的渗透[J]. 测绘科学, 1994(2): 28-31.) [19] CHENG Jicheng, GUO Huadong, SHI Wenzhong, et al. The Undetermined Questions of Remote Sensing Data[M]. Beijing: Science Press, 2004. (承继成, 郭华东, 史文中, 等. 遥感数据的不确定性问题[M]. 北京: 科学出版社, 2004.) [20] TAO Chunkan, TAO Chunkuang. Optical Information Theory[M]. Beijing: Science Press, 2004. (陶纯堪, 陶纯匡. 光学信息论[M]. 北京: 科学出版社, 2004.) [21] CORNER B R, NARAYANAN R M, REICHENBACH S E. Noise Estimation in Remote Sensing Imagery Using Data Masking[J]. International Journal of Remote Sensing, 2003, 24(4): 689-702. [22] VANDER MEER F. Remote-sensing Image Analysis and Geostatistics[J]. International Journal of Remote Sensing, 2012, 33(18): 5644-5676. [23] ASMAT A, ATKINSON P M, FOODY G M. Geostatistically Estimated Image Noise is a Function of Variance in the Underlying Signal[J]. International Journal of Remote Sensing, 2010, 31(4): 1009-1025. [24] CURRANP J, DUNGAN J L. Estimation of Signal-to-Noise:A New Procedure Applied to AVIRIS Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1989, 27(5): 620-628. [25] CRESSIE N. Fitting Variogram Models by Weighted Least Squares[J]. Journal of the International Association for Mathematical Geology, 1985, 17(5): 563-586. [26] GRINGARTEN E, DEUTSCH C V. Variogram Interpretation and Modeling[J]. Mathematical Geology, 2001, 33(4): 507-534. |