Acta Geodaetica et Cartographica Sinica ›› 2020, Vol. 49 ›› Issue (2): 245-255.doi: 10.11947/j.AGCS.2020.20190280
• Cartography and Geoinformation • Previous Articles Next Articles
AN Xiaoya1,2, CHENG Xiaoqiang3
Received:2019-07-01
Revised:2019-10-18
Published:2020-03-03
Supported by:CLC Number:
AN Xiaoya, CHENG Xiaoqiang. Visual clarity of vector curve and its application in web map generalization[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(2): 245-255.
| [1] TOUYA G, HOARAU C, CHRISTOPHE S. Clutter and map legibility in automated cartography:a research agenda[J]. Cartographica:The International Journal for Geographic Information and Geovisualization, 2016, 51(4):198-207. [2] HARRIE L, MUSTIōRE S, STIGMAR H. Cartographic quality issues for view services in Geoportals[J]. Cartographica:The International Journal for Geographic Information and Geovisualization, 2011, 46(2):92-100. [3] 艾廷华, 郭宝辰, 黄亚峰. 1:5万地图数据库的计算机综合缩编[J]. 武汉大学学报(信息科学版), 2005, 30(4):297-300. AI Tinghua, GUO Baochen, HUANG Yafeng. Construction of 1:50000 map database by computer generalization method[J]. Geomatics and Information Science of Wuhan University, 2005, 30(4):297-300. [4] RAPOSO P. Scale and generalization[M]//WILSON J P. The Geographic Information Science & Technology Body of Knowledge. US:UCGIS, 2017. [5] 杨敏, 艾廷华, 卢威, 等. 自发地理信息兴趣点数据在线综合与多尺度可视化方法[J]. 测绘学报, 2015, 44(2):228-234. DOI:10.11947/j.AGCS.2015.20130564. YANG Min, AI Tinghua, LU Wei, et al. A real-time generalization and multi-scale visualization method for POI data in volunteered geographic information[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(2):228-234. DOI:10.11947/j.AGCS.2015.20130564. [6] BEREUTER P, WEIBEL R. Real-time generalization of point data in mobile and web mapping using quadtrees[J]. Cartography and Geographic Information Science, 2013, 40(4):271-281. [7] 武芳, 巩现勇, 杜佳威. 地图制图综合回顾与前望[J]. 测绘学报, 2017, 46(10):1645-1664. DOI:10.11947/j.AGCS.2017.20170287. WU Fang, GONG Xianyong, DU Jiawei. Overview of the research progress in automated map generalization[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1645-1664. DOI:10.11947/j.AGCS.2017.20170287. [8] REICHENBACHER T. Mobile usage and adaptive visualization[M]//SHEKHAR S, XIONG H. Encyclopedia of GIS. Boston:Springer, 2008:677-682. [9] TOUYA G, BRANDO-ESCOBAR C. Detecting Level-of-Detail Inconsistencies in Volunteered Geographic Information Data Sets[J]. Cartographica:the International Journal for Geographic Information and Geovisualization, 2013, 48(2):134-143. [10] SESTER M, JOKAR ARSANJANI J, KLAMMER R, et al. Integrating and generalising volunteered geographic information[M]//BURGHARDT D, DUCHêNE C, MACKANESS W. Abstracting Geographic Information in a Data Rich World:Methodologies and Applications of Map Generalisation. Cham:Springer, 2014:119-155. [11] STAUFFER A J, WEBINGER S, ROCHE B. Enriching the national map database for multi-scale use:Introducing the visibilityfilter attribution[C]//Proceedings of the 19th International Research Symposium on Computer-Based Cartography. Albuquerque, New Mexico:USGS, 2016. [12] BILJECKI F, LEDOUX H, STOTER J, et al. Formalisation of the level of detail in 3D city modelling[J]. Computers, Environment and Urban Systems, 2014, 48:1-15. [13] TOUYA G, REIMER A. Inferring the scale of OpenStreetMap features[M]//JOKAR ARSANJANI J, ZIPF A, MOONEY P, et al. OpenStreetMap in GIScience:Experiences, Research, and Applications. Cham:Springer, 2015:81-99. [14] SHEA K S, MCMASTER R B. Cartographic generalization in a digital environment:when and how to generalize[C]//Proceedings of the 9th International Symposium on Computer-Assisted Cartography. Baltimore:[s.n.], 1989. [15] MUSTIERE S. Cartographic generalization of roads in a local and adaptive approach:a knowledge acquistion problem[J]. International Journal of Geographical Information Science, 2005, 19(8-9):937-955. [16] SKOPELITI A, TSOULOS L. On the Parametric Description of the Shape of the Cartographic Line[J]. Cartographica:The International Journal for Geographic Information and Geovisualization, 1999, 36(3):53-65. [17] UNI-ZH. Selection of basic measures[R].[S.l.]:AGENT, 2001. [18] LI Zhilin. Algorithmic foundation of multi-scale spatial representation[M]. New York:CRC Press, 2006. [19] FOLEY J D, VAN DAM A, FEINER S K, et al. Introduction to computer graphics[M]. Boston:Addison-Wesley Professional, 1993. [20] OPENSTREETMAP. Slippy map tilenames[EB/OL]. (2017-05-07)[2018-05-30]. http://wiki.openstreetmap.org/wiki/Slippy_map_tilenames#Resolution_and_Scale. [21] MICROSOFT. Bing maps tile system[EB/OL]. (2017-05-30)[2018-05-30]. https://msdn.microsoft.com/en-us/library/bb259689.aspx. [22] 梅洋, 李霖, 贺彪. 基于边界反走样算法的地图可视化研究[J]. 武汉大学学报(信息科学版), 2008, 33(7):759-761. MEI Yang, LI Lin, HE Biao. Cartographic visualization based on boundary anti-aliasing[J]. Geomatics and Information Science of Wuhan University, 2008, 33(7):759-761. [23] OGC. OGC 06-103r4 OpenGIS® implementation standard for geographic information-simple feature access-part 1:common architecture[S]. Wayland:OGC, 2011. [24] HARRIE L, STIGMAR H, DJORDJEVIC M. Analytical estimation of map readability[J]. ISPRS International Journal of Geo-Information, 2015, 4(2):418-446. [25] STOTER J, ZHANG Xiang, STIGMAR H, et al. Evaluation in generalisation[M]//BURGHARDT D, DUCHȆNE C, MACKANESS W. Abstracting Geographic Information in A Data Rich World:Methodologies and Applications of Map Generalisation. Cham:Springer, 2014:259-297. |
| [1] | Yue QIU, Fang WU, Renjian ZHAI, Haizhong QIAN, Zhekun HUANG, Bo LI. An entity-level conformal spatial alignment model for multi-source building matching optimization [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2262-2275. |
| [2] | Jinbin ZHANG, Jun ZHU, Pei DANG, Yuxuan ZHOU, Bowen YANG. Live-streaming geographic information service: remote immersive perception of on-site conditions based on VR panoramas [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2276-2286. |
| [3] | Yan ZHANG. A multi-scale spatio-temporal sensing method for urban function zone based on street view images [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2289-2289. |
| [4] | Jin ZENG. Quantifying and analyzing urban social space using spatial big data: a case study of Shenzhen [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2292-2292. |
| [5] | Shaojun LIU. Analysis and research on the spatio-temporal pattern of urban crowd activities based on mobile signaling data [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(12): 2295-2295. |
| [6] | Chao WU, Yongxiang LIANG, Han YUE, Yuanzheng CUI, Bo HUANG. Geographically and temporally weighted Poisson regression for count data [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 2026-2039. |
| [7] | Xiaolong WANG, Zhuo WANG, Jingzhong LI, Haowen YAN. Translation of spatial direction relationship for We-map making [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 2040-2051. |
| [8] | Xin HU, Xuexi YANG, Yifan JIANG, Xianbin WANG, Chen DING, Guran XIE, Min DENG. Hierarchical multi-agent collaboration for geographic event extraction and spatio-temporal parsing [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 2052-2067. |
| [9] | Jun LI, Chaokui LI, Lei HUANG, Yuanyuan FENG. Highway billboard inspection object tracking based on improved ByteTrack algorithm [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 2068-2080. |
| [10] | Xinyu YE, Shenghua XU, Jiping LIU, Hongyu CHEN, Zhuolu WANG, Weilian LI. Next point of interest recommendation based on spatio-temporal causal inference [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(11): 2081-2096. |
| [11] | Xuesheng ZHAO, Wenlan XIE, Wenbin SUN. Research progress and key issues in spatial grid interoperability [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(10): 1727-1740. |
| [12] | Fan GAO, Wei LU, Linlu GAN, Fan ZHANG, Fengjuan RONG, Shihan TANG. An intelligent parallel geocomputation engine framework [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(10): 1877-1892. |
| [13] | Haoyu WU, Qing ZHU, Yulin DING, Liu BAO, Li LIU. High-precision digital twin modeling of tunnel surrounding rock driven by data model knowledge collaboration [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(10): 1893-1906. |
| [14] | Yulu HAO. Spatio-temporal data-driven city-level fire risk assessment and prediction modeling and applications [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(10): 1910-1910. |
| [15] | Fubing ZHANG, Qun SUN, Qing XU, Jingzhen MA, Wenjun HUANG, Ruoxu CHEN. An automatic river classification and selection method supported by random forest and graph neural network [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(9): 1697-1711. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||