Acta Geodaetica et Cartographica Sinica ›› 2020, Vol. 49 ›› Issue (12): 1564-1574.doi: 10.11947/j.AGCS.2020.20200139
• Photogrammetry and Remote Sensing • Previous Articles Next Articles
LI Yansheng, KONG Deyu, ZHANG Yongjun, JI Zheng, XIAO Rui
Received:
2020-04-14
Revised:
2020-11-02
Published:
2020-12-25
Supported by:
CLC Number:
LI Yansheng, KONG Deyu, ZHANG Yongjun, JI Zheng, XIAO Rui. Zero-shot remote sensing image scene classification based on robust cross-domain mapping and gradual refinement of semantic space[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(12): 1564-1574.
[1] 李德仁, 张良培, 夏桂松. 遥感大数据自动分析与数据挖掘[J]. 测绘学报, 2014, 43(12):1211-1216. DOI:10.13485/j.cnki.11-2089.2014.0187. LI Deren, ZHANG Liangpei, XIA Guisong. Automatic analysis and mining of remote sensing big data[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(12):1211-1216. DOI:10.13485/j.cnki.11-2089.2014.0187. [2] 张鑫龙, 陈秀万, 李飞, 等. 高分辨率遥感影像的深度学习变化检测方法[J]. 测绘学报, 2017, 46(8):999-1008. DOI:10.11947/j.AGCS.2017.20170036. ZHANG Xinlong, CHEN Xiuwan, LI Fei, et al. Change detection method for high resolution remote sensing images using deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(8):999-1008. DOI:10.11947/j.AGCS.2017.20170036. [3] LI Yansheng, TAO Chao, TAN Yihua, et al. Unsupervised multilayer feature learning for satellite image scene classification[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2):157-161. [4] 许夙晖, 慕晓冬, 赵鹏, 等. 利用多尺度特征与深度网络对遥感影像进行场景分类[J]. 测绘学报, 2016, 45(7):834-840. DOI:10.11947/j.AGCS.2016.20150623. XU Suhui, MU Xiaodong, ZHAO Peng, et al. Scene classification of remote sensing image based on multi-scale feature and deep neural network[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(7):834-840. DOI:10.11947/j.AGCS.2016.20150623. [5] 郑卓, 方芳, 刘袁缘, 等. 高分辨率遥感影像场景的多尺度神经网络分类法[J]. 测绘学报, 2018, 47(5):620-630. DOI:10.11947/j.AGCS.2018.20170191. ZHENG Zhuo, FANG Fang, LIU Yuanyuan, et al. Joint multi-scale convolution neural network for scene classification of high resolution remote sensing imagery[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(5):620-630. DOI:10.11947/j.AGCS.2018.20170191. [6] LI Yansheng, ZHANG Yongjun, HUANG Xin, et al. Large-scale remote sensing image retrieval by deep hashing neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2):950-965. [7] LI Yansheng, ZHANG Yongjun, HUANG Xin, et al. Learning source-invariant deep hashing convolutional neural networks for cross-source remote sensing image retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(11):6521-6536. [8] LI Yansheng, ZHANG Yongjun, HUANG Xin, et al. Deep networks under scene-level supervision for multi-class geospatial object detection from remote sensing images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 146:182-196. [9] DAI Yuchao, ZHANG Jing, HE Mingyi, et al. Salient object detection from multi-spectral remote sensing images with deep residual network[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2):101-110. [10] LI Yansheng, CHEN Wei, ZHANG Yongjun, et al. Accurate cloud detection in high-resolution remote sensing imagery by weakly supervised deep learning[J]. Remote Sensing of Environment, 2020, 250:112045. [11] 何小飞, 邹峥嵘, 陶超, 等. 联合显著性和多层卷积神经网络的高分影像场景分类[J]. 测绘学报, 2016, 45(9):1073-1080. DOI:10.11947/j.AGCS.2016.20150612. HE Xiaofei, ZOU Zhengrong, TAO Chao, et al. Combined saliency with multi-convolutional neural network for high resolution remote sensing scene classification[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(9):1073-1080. DOI:10.11947/j.AGCS.2016.20150612. [12] ZHANG Fan, DU Bo, ZHANG Liangpei. Scene classification via a gradient boosting random convolutional network framework[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3):1793-1802. [13] LI Yansheng, ZHANG Yongjun, ZHU Zhihui. Error-tolerant deep learning for remote sensing image scene classification[J]. IEEE Transactions on Cybernetics, 2020. DOI:10.1109/TCYB.2020.2989241. [14] LAROCHELLE H, ERHAN D, BENGIO Y. Zero-data learning of new tasks[C]//Proceedings of the 23rd AAAI Conference on Artificial Intelligence. Chicago, IL:AAAI, 2008:3. [15] PALATUCCI M, POMERLEAU D, HINTON G, et al. Zero-shot learning with semantic output codes[C]//Proceedings of the 22nd International Conference on Neural Information Processing Systems. Vancouver, British Columbia, Canada:NIPS, 2009:1410-1418. [16] BIEDERMAN I. Recognition-by-components:a theory of human image understanding[J]. Psychological Review, 1987, 94(2):115-147. [17] KODIROV E, XIANG Tao, GONG Shaogang. Semantic autoencoder for zero-shot learning[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI:IEEE, 2017:4447-4456. [18] LI Yanan, WANG Donghui, HU Huanhang, et al. Zero-shot recognition using dual visual-semantic mapping paths[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI:IEEE, 2017:5207-5215. [19] XIAN Yongqin, LAMPERT C H, SCHIELE B, et al. Zero-shot learning:a comprehensive evaluation of the good, the bad and the ugly[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(9):2251-2265. [20] WAH C, BRANSON S, WELINDER P, et al. The Caltech-UCSD birds-200-2011 dataset[R]. Pasadena:California Institute of Technology, 2011. [21] LAMPERT C H, NICKISCH H, HARMELING S. Learning to detect unseen object classes by between-class attribute transfer[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, FL:IEEE, 2009:951-958. [22] MIKOLOV T, SUTSKEVER I, CHEN Kai, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe, NE:NIPS, 2013:3111-3119. [23] PENNINGTON J, SOCHER R, MANNING C. Glove:global vectors for word representation[C]//Proceedings of 2014 Conference on Empirical Methods in Natural Language Processing. Doha, Qatar:EMNLP, 2014:1532-1543. [24] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems. Montreal, Quebec, Canada:NIPS, 2014:2672-2680. [25] XIAN Yongqin, LORENZ T, SCHIELE B, et al. Feature generating networks for zero-shot learning[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT:IEEE, 2018:5542-5551. [26] ELHOSEINY M, ELFEKI M. Creativity inspired zero-shot learning[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision. Seoul:IEEE, 2019:5783-5792. [27] SUMBUL G, CINBIS R G, AKSOY S. Fine-grained object recognition and zero-shot learning in remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(2):770-779. [28] SONG Qian, XU Feng. Zero-shot learning of SAR target feature space with deep generative neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(12):2245-2249. [29] GUI Rong, XU Xin, WANG Lei, et al. A generalized zero-shot learning framework for PolSAR land cover classification[J]. Remote Sensing, 2018, 10(8):1307. [30] QUAN Jicheng, WU Chen, WANG Hongwei, et al. Structural alignment based zero-shot classification for remote sensing scenes[C]//Proceedings of 2018 IEEE International Conference on Electronics and Communication Engineering. Xi'an, China:IEEE, 2018:17-21. [31] LI Aoxue, LU Zhiwu, WANG Liwei, et al. Zero-shot scene classification for high spatial resolution remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7):4157-4167. [32] 吴晨, 王宏伟, 袁昱纬, 等. 基于图像特征融合的遥感场景零样本分类算法[J]. 光学学报, 2019, 39(6):61-68. WU Chen, WANG Hongwei, YUAN Yuwei, et al. Image feature fusion based remote sensing scene zero-shot classification algorithm[J]. Acta Optica Sinica, 2019, 39(6):61-68. [33] 吴晨, 袁昱纬, 王宏伟, 等. 基于词向量融合的遥感场景零样本分类算法[J]. 计算机科学, 2019, 46(12):286-291. WU Chen, YUAN Yuwei, WANG Hongwei, et al. Word vectors fusion based remote sensing scenes zero-shot classification algorithm[J]. Computer Science, 2019, 46(12):286-291. [34] BARTELS R H, STEWART G W. Solution of the matrix equation AX+ XB=C[F4] [J]. Communications of the ACM, 1972, 15(9):820-826. [35] XIA Guisong S, HU Jingwen, HU Fan, et al. AID:a benchmark data set for performance evaluation of aerial scene classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7):3965-3981. [36] CHENG Gong, HAN Junwei, LU Xiaoqiang. Remote sensing image scene classification:benchmark and state of the art[J]. Proceedings of the IEEE, 2017, 105(10):1865-1883. [37] YANG Yi, NEWSAM S. Bag-of-visual-words and spatial extensions for land-use classification[C]//Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. San Jose, CA:GIS, 2010:270-279. [38] ZHOU Weixun, NEWSAM S, LI Congmin, et al. Pattern net:a benchmark dataset for performance evaluation of remote sensing image retrieval[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145:197-209. [39] LI Haifeng, DOU Xin, TAO Chao, et al. RSI-CB:a large-scale remote sensing image classification benchmark using crowdsourced data[J]. Sensors, 2020, 20(6):1594. [40] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV:IEEE, 2016:770-778. [41] BOJANOWSKI P, GRAVE E, JOULIN A, et al. Enriching word vectors with subword information[J]. Transactions of the Association for Computational Linguistics, 2017, 5:135-146. [42] HOERL A E, KENNARD R W. Ridge regression:biased estimation for nonorthogonal problems[J]. Technometrics, 1970, 12(1):55-67. [43] TAO S Y, YEH Y R, WANG Y C F. Semantics-preserving locality embedding for zero-shot learning[C]//Proceedings of British Machine Vision Conference. London, UK:BMVC, 2017:2017. |
[1] | CHENG Jiehai, HUANG Zhongyi, WANG Jianru, HE Shi. The automatic determination method of the optimal segmentation result of high-spatial resolution remote sensing image [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 658-667. |
[2] | LIANG Zheheng, LI Xiao, DENG Peng, SHENG Sen, JIANG Fuquan. Remote sensing image change detection fusion method integrating multi-scale feature attention [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 668-676. |
[3] | BAI Kun, MU Xiaodong, CHEN Xuebing, ZHU Yongqing, YOU Xuanang. Unsupervised remote sensing image scene classification based on semi-supervised learning [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 691-702. |
[4] | HUANG Mingyi, WU Jun, GAO Jiongli. Seamless spherical video generation for multi-head panoramic camera(MPC) [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 703-717. |
[5] | WANG Dandi, XING Shuai, XU Qing, LIN Yuzhun, LI Pengcheng. Automatic sea-land waveform classification method for single-wavelength airborne LiDAR bathymetry [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 750-761. |
[6] | ZHANG Zhimin. Study of annual mass balance estimation in the Tibetan plateau glaciers based on remote sensing albedo [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 781-781. |
[7] | LI Yongqiang, LI Pengpeng, DONG Yahan, FAN Huilong. Automatic extraction and classification of pole-like objects from vehicle LiDAR point cloud [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 724-735. |
[8] | WANG Jingxue, LIU Suyan, WANG Weixi. A checking algorithm for pair-wise line matching based on collinearity constraint and matching redundancy [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 746-756. |
[9] | ZHAN Zongqian, HU Mengqi, MAN Yiyun. Multi-scale region growing point cloud filtering method based on surface fitting [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 757-766. |
[10] | HAN Bin, WU Yiquan. Robust estimation algorithm of active contour model for river extraction in SAR images [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 777-786. |
[11] | DENG Ruizhe, CHEN Qihao, CHEN Qi, LIU Xiuguo. A deformable feature pyramid network for ship detection from remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 787-797. |
[12] | HUANG Liang. Research on change detection technology in multi-temporal remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 801-801. |
[13] | WU Wenhao, ZHANG Lei, LI Tao, LONG Sichun, DUAN Meng, ZHOU Zhiwei, ZHU Chuanguang, JIANG Tingchen. Coregistration scheme and error analysis of multi-mode SAR image based on geometric coregistration [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1439-1451. |
[14] | ZHAO Shengyin, AN Ru, ZHU Meiru. Urban change detection by aerial remote sensing using combining features of pixel-depth-object [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1452-1463. |
[15] | LIU Zhaoxin, ZHAO Liaoying, LI Xiaorun, CHEN Shuhan. Linear feature detection for hyperspectral subpixel mapping [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1464-1474. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||