[1] 高俊, 万刚. 战场环境工程理论和技术[M]. 北京:解放军出版社, 2016:16-18. GAO Jun, WAN Gang. Theory and technology of battlefield environment engineering[M]. Beijing:PLA Press, 2016:16-18. [2] 徐志红. 基于事件语义的时空数据模型的研究[D]. 武汉:武汉大学, 2005. XU Zhihong. Study on spatio-temporal data model based on event semantics[D]. Wuhan:Wuhan University, 2005. [3] 姚迪, 张超, 黄建辉, 等. 时空数据语义理解:技术与应用[J]. 软件学报, 2018, 29(7):2018-2045. YAO Di, ZHANG Chao, HUANG Jianhui, et al. Semantic understanding of spatio-temporal data:technology & application[J]. Journal of Software, 2018, 29(7):2018-2045. [4] 胡丹露. 战场环境信息支持作战决策研究[J]. 军事运筹与系统工程, 2004, 18(2):43-47. HU Danlu. Support decision making system on geo-data[J]. Military Operations Research and Systems Engineering, 2004, 18(2):43-47. [5] 李锋, 万刚, 蒋秉川, 等. 虚拟地理环境时空建模及其作战计划推演应用[J]. 测绘学报, 2018, 47(8):1072-1079. DOI:10.11947/j.AGCS.2018.20180115. LI Feng, WAN Gang, JIANG Bingchuan, et al. Spatio-temporal modeling of virtual geographic environments and its application in battle plan deduction[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(8):1072-1079. DOI:10.11947/j.AGCS.2018.20180115. [6] 王琦文. 战场态势推理关键技术研究及应用[D]. 西安:西安电子科技大学, 2018. WANG Qiwen. Research and application of key techniques of battlefield situational reasoning[D]. Xian:Xidian University, 2018. [7] 游雄, 田江鹏. 面向无人自主平台的战场地理环境模型研究[J]. 系统仿真学报, 2020, 32(9):1645-1653. YOU Xiong, TIAN Jiangpeng. Research on geographical battlefield environment model facing autonomous platform[J]. Journal of System Simulation, 2020, 32(9):1645-1653. [8] 白亮, 郭金林, 老松杨. 基于深度认知神经网络的跨媒体情报大数据智能处理技术[J]. 指挥与控制学报, 2016, 2(4):345-349. BAI Liang, GUO Jinlin, LAO Songyang. Cross-media intelligence processing based on deep cognition neural networks[J]. Journal of Command and Control, 2016, 2(4):345-349. [9] 李鸿飞, 魏勇, 赵彦庆, 等. 语义模型支持的战场环境数据集成方法[J]. 测绘科学技术学报, 2019, 36(6):632-636, 642. LI Hongfei, WEI Yong, ZHAO Yanqing, et al. Battlefield environment data integration method supported by semantic model[J]. Journal of Geomatics Science and Technology, 2019, 36(6):632-636, 642. [10] 王保魁, 吴琳, 胡晓峰, 等. 基于知识图谱的联合作战态势实体描述方法[J]. 指挥控制与仿真, 2020, 42(3):8-13. WANG Baokui, WU Lin, HU Xiaofeng, et al. Description method of joint operation situation entity based on knowledge graph[J]. Command Control & Simulation, 2020, 42(3):8-13. [11] 张永亮, 董浩洋, 刘勇. 基于知识的智能指挥决策运行机制及其支撑技术研究[J]. 军事运筹与系统工程, 2020, 34(2):5-12. ZHANG Yongliang, DONG Haoyang, LIU Yong. Research on the support technology and its intelligent command decision-making mechanism based on knowledge[J]. Military Operations Research and Systems Engineering, 2020, 34(2):5-12. [12] LACY L W, THERESA T, DOUG R. Extending the military scenario description language (MSDL) to represent deep green course of action descriptions[C]. Proceedings of Spring Simulation Interoperability Worksho, 2010. Orlando:SISO (Simulation Inleroperability Standard Organization), 2010:131-142. [13] United States Department of Defense. Unmanned systems integrated roadmap FY2017-2042[R]. Washinton D C:United States Department of Defense, 2017. [14] 陶超, 谭毅华, 彭碧发, 等. 一种基于概率潜在语义模型的高分辨率遥感影像分类方法[J]. 测绘学报, 2011, 40(2):156-162. TAO Chao, TAN Yihua, PENG Bifa, et al. A probabilistic latent semantic analysis based classification for high resolution remotely sensed imagery[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(2):156-162. [15] 王志宝, 夏昊, 王成波. 地理信息检索关键技术研究综述[J]. 计算机工程与科学, 2018, 40(3):533-543. WANG Zhibao, XIA Hao, WANG Chengbo. Review of the key techniques of geographic information retrieval[J]. Computer Engineering and Science, 2018, 40(3):533-543. [16] 罗月童, 刘璐, 刘新月, 等. 空间语义增强下的城市交通事故数据可视分析[J]. 中国图象图形学报, 2019, 24(12):2279-2290. LUO Yuetong, LIU Lu, LIU Xinyue, et al. Visual spatial analytic method for spatial semantic-enhanced urban traffic data[J]. Journal of Image and Graphics, 2019, 24(12):2279-2290. [17] 段炼, 呙维, 朱欣焰, 等. 基于时空主题模型的微博主题提取[J]. 武汉大学学报(信息科学版), 2014, 39(2):210-213, 243. DUAN Lian, GUO Wei, ZHU Xinyan, et al. Constructing spatio-temporal topic model for microblog topic retrieving[J]. Geomatics and Information Science of Wuhan University, 2014, 39(2):210-213, 243. [18] 陈世莉, 陶海燕, 李旭亮, 等. 基于潜在语义信息的城市功能区识别——广州市浮动车GPS时空数据挖掘[J]. 地理学报, 2016, 71(3):471-483. CHEN Shili, TAO Haiyan, LI Xuliang, et al. Discovering urban functional regions using latent semantic information:spatiotemporal data mining of floating cars GPS data of Guangzhou[J]. Acta Geographica Sinica, 2016, 71(3):471-483. [19] 王艳东, 李昊, 王腾, 等. 基于社交媒体的突发事件应急信息挖掘与分析[J]. 武汉大学学报(信息科学版), 2016, 41(3):290-297. WANG Yandong, LI Hao, WANG Teng, et al. The mining and analysis of emergency information in sudden events based on social media[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3):290-297. [20] 蒋波涛, 王艳东, 叶信岳. 使用点评数据探测城市商业服务设施的发展规律[J]. 测绘学报, 2015, 44(9):1022-1028. DOI:10.11947/j.AGCS.2015.20140556. JIANG Botao, WANU Yandong, YE Xinyue. Detecting development pattern of urban business facilities using reviews data[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(9):1022-1028. DOI:10.11947/j.AGCS.2015.20140556. [21] 沈盛彧, 刘哲, 张平仓, 等. 一种基于LDA的高分辨率遥感影像检索方法[J]. 长江科学院院报, 2014, 31(8):98-102, 121. SHEN Shengyu, LIU Zhe, ZHANG Pingcang, et al. A method of high-resolution remote sensing image retrieval based on LDA[J]. Journal of Yangtze River Scientific Research Institute, 2014, 31(8):98-102, 121. [22] MEI Qiaozhu, LIU Chao, SU Hang, et al. A probabilistic approach to spatiotemporal theme pattern mining on weblogs[C]//Proceedings of the 15th International Conference on World Wide Web. Edinburgh, Scotland:ACM, 2006:533-542. [23] YUAN Quan, CONG Gao, MA Zongyang, et al. Who, where, when and what:discover spatio-temporal topics for twitter users[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Chicago, Illinois:ACM, 2013:605-613. [24] HU Bo, JAMALI M, ESTER M. Spatio-temporal topic modeling in mobile social media for location recommendation[C]//Proceedings of the 2013 IEEE 13th International Conference on Data Mining. Dallas, TX:IEEE, 2013:1073-1078. [25] HONG Liangjie, AHMED A, GURUMURTHY S, et al. Discovering geographical topics in the twitter stream[C]//Proceedings of the 21st International Conference on World Wide Web. Lyon, France:ACM, 2012:769-778. [26] YIN Zhijun, CAO Liangliang, HAN Jiawei, et al. Geographical topic discovery and comparison[C]//Proceedings of the 20th International Conference on World Wide Web.Hyderabad, India:ACM, 2011:247-256. [27] ZHAO Fei, DU Qingyun, REN Fu, et al. Syntactic characteristics and a smart construction mechanism for thematic map symbols[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(1):37-48. [28] 孙锐, 郭晟, 姬东鸿. 融入事件知识的主题表示方法[J]. 计算机学报, 2017, 40(4):791-804. SUN Rui, GUO Sheng, JI Donghong. Topic representation integrated with event knowledge[J]. Chinese Journal of Computers, 2017, 40(4):791-804. [29] 黄宗财, 仇培元, 陆锋, 等. 基于联合主题特征的网络新闻文本蕴含环境污染事件检测[J]. 地球信息科学学报, 2019, 21(10):1510-1517. HUANG Zongcai, QIU Peiyuan, LU Feng, et al. Detection of environmental pollution events in news corpora based on joint thematic features[J]. Journal of Geo-information Science, 2019, 21(10):1510-1517. [30] 郭域峰, 战晓苏. 基于LDA的综合集成研讨实验数据聚类分析方法研究[J]. 军事运筹与系统工程, 2016, 30(2):63-67. GUO Yufeng, ZHAN Xiaosu. Research on clustering analysis method of experiment data of comprehensive discussion based on LDA[J]. Military Operations Research and Systems Engineering, 2016, 30(2):63-67. [31] WANG Xuerui, MCCALLUM A. Topics over time:a non-Markov continuous-time model of topical trends[C]//Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Philadelphia:ACM, 2006:424-433. [32] 邢汉发, 孟媛, 侯东阳, 等. 一种应用兴趣点数据进行地表覆盖分类的方法[J]. 武汉大学学报(信息科学版), 2019, 44(5):758-764. XING Hanfa, MENG Yuan, HOU Dongyang, et al. A land-cover classification method using point of interest[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5):758-764. |