[1] 自然资源部. 自然资源调查监测体系构建总体方案[EB/OL].(2020-01-17)[2020-01-20].http://www.gov.cn:8080/zhengce/zhengceku/2020-01/18/content_5470398.htm. Ministry of Natural Resources of the People's Republic of China. Overall plan for the construction of the natural resources investigation and monitoring system[EB/OL]. (2020-01-17)[2020-01-20]. http://www.gov.cn:8080/zhengce/zhengceku/2020-01/18/content_5470398.htm. [2] 周培诚,程塨,姚西文,等.高分辨率遥感影像解译中的机器学习范式[J].遥感学报,2021,25(1):182-197. ZHOU Peicheng,CHENG Gong,YAO Xiwen,et al. Machine learning paradigms in high-resolution remote sensing image interpretation[J]. Journal of Remote Sensing(Chinese),2021, 25(1):182-197. [3] LI Jiayi, HUANG Xin, GONG Jianya. Deep neural network for remote-sensing image interpretation:status and perspectives[J]. National Science Review, 2019, 6(6):1082-1086. [4] 龚健雅, 季顺平. 摄影测量与深度学习[J]. 测绘学报, 2018, 47(6):693-704. GONG Jianya, JI Shunping. Photogrammetry and deep learning[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6):693-704. [5] 贺浩, 王仕成, 杨东方, 等. 基于Encoder-Decoder网络的遥感影像道路提取方法[J]. 测绘学报, 2019, 48(3):330-338. HE Hao, WANG Shicheng, YANG Dongfang, et al. An road extraction method for remote sensing image based on Encoder-Decoder network[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(3):330-338. [6] ZHANG Wei, TANG Ping, CORPETTI T, et al. WTS:a weakly towards strongly supervised learning framework for remote sensing land cover classification using segmentation models[J]. Remote Sensing, 2021, 13(3):394. [7] YAN Xiongfeng, AI Tinghua, YANG Min, et al. A graph convolutional neural network for classification of building patterns using spatial vector data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150:259-273. [8] MA D, TANG Ping, ZHAO Lijun. SiftingGAN:generating and sifting labeled samples to improve the remote sensing image scene classification baseline in vitro[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(7):1046-1050. [9] OUYANG Song, LI Yansheng. Combining deep semantic segmentation network and graph convolutional neural network for semantic segmentation of remote sensing imagery[J]. Remote Sensing, 2020, 13(1):119. [10] PIRES DE LIMA R, MARFURT K. Convolutional neural network for remote-sensing scene classification:transfer learning analysis[J]. Remote Sensing, 2019, 12(1):86. [11] CUI Binge, CHEN Xin, LU Yan. Semantic segmentation of remote sensing images using transfer learning and deep convolutional neural network with dense connection[J]. IEEE Access, 2020, 8:116744-116755. [12] XU Guang, ZHU Xuan, TAPPER N. Using convolutional neural networks incorporating hierarchical active learning for target-searching in large-scale remote sensing images[J]. International Journal of Remote Sensing, 2020, 41(11):4057-4079. [13] 范向民, 范俊君, 田丰, 等. 人机交互与人工智能:从交替浮沉到协同共进[J]. 中国科学:信息科学, 2019, 49(3):361-368. FAN Xiangmin, FAN Junjun, TIAN Feng, et al. Human-computer interaction and artificial intelligence:from competition to integration[J]. Scientia Sinica (Informationis), 2019, 49(3):361-368. [14] 周小程,高冬明.人机协同,"智"在必得[N].解放军报,2019-12-06(11). ZHOU Xiaocheng, GAO Dongming. Human-machine collaboration, "wisdom" must be won[N]. People's Liberation Army Daily, 2019-12-06(11). [15] 邹德宝,人机协同考验AI产业智慧[N].中国电子报,2020-11-20(6). ZOU Debao, Human-machine collaboration tests the wisdom of the AI industry[N]. China Electronics News, 2020-11-20(6). [16] LENAT D B, FEIGENBAUM E A. On the thresholds of knowledge[J]. Artificial Intelligence, 1991, 47(1):185-230. [17] 路甬祥, 陈鹰. 人机一体化系统与技术立论[J]. 机械工程学报, 1994, 30(6):1-9. LU Yongxiang, CHEN Ying. Foundation of the humachine system[J]. Chinese Journal of Mechanical Engineering, 1994, 30(6):1-9. [18] E-works. Explore industry 4.0[EB/OL].[2019-02-20].https://www.e-works.net.cn/report/industry/industry.html. [19] OSTP. The national artificial intelligence research and development strategic plan:2019 Update[R].[S.l.]:Select Committee on Artificial Intelligence. [20] BERTINO E, FINALE D, GINI M,et al. Artificial Intelligence &Cooperation[EB/OL].[2020-05-18]. https://cra.org/ccc/resources/ccc-led-whitepapers/#2020-quadren-nialpapers. [21] 国务院.《新一代人工智能发展规划》国发[2017]35号.[EB/OL].[2017-07-20]. http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm. The State Council. New generation artificial intelligence development plan" Guofa (2017) No. 35.[EB/OL].[2017-07-20]. http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm. [22] 陈玲, 贾佳, 王海庆. 高分遥感在自然资源调查中的应用综述[J]. 国土资源遥感, 2019, 31(1):1-7. CHEN Ling, JIA Jia, WANG Haiqing. An overview of applying high-resolution remote sensing to natural resources survey[J]. Remote Sensing for Land & Resources, 2019, 31(1):1-7. [23] GU Haiyan, HAN Yanshun, YANG Yi, et al. An efficient parallel multi-scale segmentation method for remote sensing imagery[J]. Remote Sensing, 2018, 10(4):590. [24] 葛良胜, 夏锐. 自然资源综合调查业务体系框架[J]. 自然资源学报, 2020, 35(9):2254-2269. GE Liangsheng, XIA Rui. Research on comprehensive investigation work system of natural resources[J]. Journal of Natural Resources, 2020, 35(9):2254-2269. [25] CHENG Gong, XIE Xingxing, HAN Junwei, et al. Remote sensing image scene classification meets deep learning:challenges, methods, benchmarks, and opportunities[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13:3735-3756. [26] WANG Junjue, ZHONG Yanfei, ZHENG Zhuo, et al. RSNet:the search for remote sensing deep neural networks in recognition tasks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(3):2520-2534. [27] LE H V, MAYER S, HENZE N. Deep learning for human-computer interaction[J]. Interactions, 2021, 28(1):78-82. [28] 汪敏, 刘轩山, 陈祎, 等. 一种基于规则引擎的智能推送方法及系统:CN109597931A[P]. 2019-04-09. WANG Min, LIU Xuanshan, CHEN Yi, et al. An intelligent pushing method and system based on a rule engine:CN109597931A[P]. 2019-04-09. [29] 田彦平, 陶超, 邹峥嵘, 等. 主动学习与图的半监督相结合的高光谱影像分类[J]. 测绘学报, 2015, 44(8):919-926. TIAN Yanping, TAO Chao, ZOU Zhengrong, et al. Semi-supervised graph-based hyperspectral image classification with active learning[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(8):919-926. [30] 孙熠, 李培军. 利用主动学习改进遥感图像单类分类:以正类和未标记样本学习方法为例[J]. 北京大学学报(自然科学版), 2020, 56(1):155-163. SUN Yi, LI Peijun. Improving one-class classification of remote sensing data by using active learning:a case study of positive and unlabeled learning[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(1):155-163.[知网] [31] 朱庆, 付萧. 多模态时空大数据可视分析方法综述[J]. 测绘学报, 2017, 46(10):1672-1677. ZHU Qing, FU Xiao. The review of visual analysis methods of multi-modal spatio-temporal big data[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1672-1677. [32] 王占宏, 白穆, 李宏建. 地理空间大数据服务自然资源调查监测的方向分析[J]. 地理信息世界, 2019, 26(1):1-5. WANG Zhanhong, BAI Mu, LI Hongjian. Direction analysis on service for natural resource investigation and monitoring using geospatial big data[J]. Geomatics World, 2019, 26(1):1-5. [33] SHI Jinshou, TANG Wenzhe, LI Ning, et al. User cognitive abilities-human computer interaction tasks model[M]//Advances in Intelligent Systems and Computing. Cham:Springer International Publishing, 2021:194-199. [34] 张继贤, 顾海燕, 鲁学军, 等. 地理国情大数据研究框架[J]. 遥感学报, 2016, 20(5):1017-1026. ZHANG Jixian, GU Haiyan, LU Xuejun, et al. Research framework of geographical conditions and big data[J]. Journal of Remote Sensing, 2016, 20(5):1017-1026. |