[1] 张旭, 郝向阳, 李建胜, 等. 监控视频中动态目标与地理空间信息的融合与可视化方法[J]. 测绘学报, 2019, 48(11):1415-1423. DOI:10.11947/j.AGCS.2019.20180572. ZHANG Xu, HAO Xiangyang, LI Jiansheng, et al. Fusion and visualization method of dynamic targets in surveillance video with geospatial information[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11):1415-1423. DOI:10.11947/j.AGCS.2019.20180572. [2] 管皓, 薛向阳, 安志勇. 深度学习在视频目标跟踪中的应用进展与展望[J]. 自动化学报, 2016, 42(6):834-847. GUAN Hao, XUE Xiangyang, AN Zhiyong. Advances on application of deep learning for video object tracking[J]. Acta Automatica Sinica, 2016, 42(6):834-847. [3] 李志欣, 施智平, 张灿龙, 等. 混合生成式和判别式模型的图像自动标注[J]. 中国图象图形学报, 2015, 20(5):687-699. LI Zhixin, SHI Zhiping, ZHANG Canlong, et al. Hybrid generative/discriminative model for automatic image annotation[J]. Journal of Image and Graphics, 2015, 20(5):687-699. [4] 朱文青, 刘艳, 卞乐, 等. 基于生成式模型的目标跟踪方法综述[J]. 微处理机, 2017, 38(1):41-47. ZHU Wenqing, LIU Yan, BIAN Le, et al. Survey on object tracking method base on generative model[J]. Microprocessors, 2017, 38(1):41-47. [5] 陈旭, 孟朝晖. 基于深度学习的目标视频跟踪算法综述[J]. 计算机系统应用, 2019, 28(1):1-9. CHEN Xu, MENG Zhaohui. Survey on video object tracking algorithms based on deep learning[J]. Computer Systems & Applications, 2019, 28(1):1-9. [6] HORN B K P, SCHUNCK B G. Determining optical flow[J]. Artificial Intelligence, 1981, 17(1-3):185-203. [7] MEI Xue, LING Haibin. Robust visual tracking and vehicle classification via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(11):2259-2272. [8] CRUZ-MOTA J, BOGDANOVA I, PAQUIER B, et al. Scale invariant feature transform on the sphere:theory and applications[J]. International Journal of Computer Vision, 2012, 98(2):217-241. [9] 李玺, 查宇飞, 张天柱, 等. 深度学习的目标跟踪算法综述[J]. 中国图象图形学报, 2019, 24(12):2057-2080. LI Xi, ZHA Yufei, ZHANG Tianzhu, et al. Survey of visual object tracking algorithms based on deep learning[J]. Journal of Image and Graphics, 2019, 24(12):2057-2080. [10] 欧阳谷, 钟必能, 白冰,等. 深度神经网络在目标跟踪算法中的应用与最新研究进展[J]. 小型微型计算机系统, 2018, 39(2):315-323. OUYANG Gu, ZHONG Bineng, BAI Bing, et al. Recent research advances and application of object tacking algorithm based on deep neural network[J]. Journal of Chinese Computer Systems, 2018, 39(2):315-323. [11] HARE S, GOLODETZ S, SAFFARI A, et al. Struck:structured output tracking with kernels[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(10):2096-2109. [12] MA Chao, HUANG Jiabin, YANG Xiaokang, et al. Hierarchical convolutional features for visual tracking[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago. Chile:IEEE, 2015:3074-3082. [13] 王志军, 马凯. 基于成像角度的特征点质心提取精度研究[J]. 激光杂志, 2018, 39(4):90-93. WANG Zhijun, MA Kai. Study on the precision of feature point centroid extraction based on imaging angle[J]. Laser Journal, 2018, 39(4):90-93. [14] 王敏, 赵金宇, 陈涛. 基于各向异性高斯曲面拟合的星点质心提取算法[J]. 光学学报, 2017, 37(5):226-235. WANG Min, ZHAO Jinyu, CHEN Tao. Center extraction method for star-map targets based on anisotropic Gaussian surface fitting[J]. Acta Optica Sinica, 2017, 37(5):226-235. [15] 王宇岚, 孙韶媛, 刘致驿, 等. 基于多视角融合的夜间无人车三维目标检测[J]. 应用光学, 2020, 41(2):296-301. WANG Yulan, SUN Shaoyuan, LIU Zhiyi, et al. Nighttime three-dimensional target detection of driverless vehicles based on multi-view channel fusion network[J]. Journal of Applied Optics, 2020, 41(2):296-301. [16] 胡玉兰, 石心蕊. 基于多摄像头协同的目标融合[J]. 电子世界, 2019(13):58-59. HU Yulan, SHI Xinrui. Object fusion based on multi-camera collaboration[J]. Electronics World, 2019(13):58-59. [17] 张兴国. 地理场景协同的多摄像机目标跟踪研究[D]. 南京:南京师范大学, 2014. ZHANG Xingguo. Object tracking methods based on geographic scene and multi-camera[D]. Nanjing:Nanjing Normal University, 2014. [18] 刘垒. 基于地理约束场景的动态目标检测及行为识别方法研究[D]. 桂林:桂林理工大学, 2020. LIU Lei. Research of dynamic target detection and behavior recognition method based on geographic constraint scene[D]. Guilin:Guilin University of Technology, 2020. [19] ZHANG Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11):1330-1334. [20] 李莉. OpenCV耦合改进张正友算法的相机标定算法[J]. 轻工机械, 2015, 33(4):60-63, 68. LI Li. Camera calibration algorithm based on OpenCV and improved Zhang zhengyou algorithm[J]. Light Industry Machinery, 2015, 33(4):60-63, 68. [21] 刘艳, 李腾飞. 对张正友相机标定法的改进研究[J]. 光学技术, 2014, 40(6):565-570. LIU Yan, LI Tengfei. Reaserch of the improvement of Zhang zhengyou camera calibration method[J]. Optical Technique, 2014, 40(6):565-570. [22] 李云功. 基于轮廓特征描述的目标识别算法研究[D]. 沈阳:沈阳理工大学, 2019. LI Yungong. Research on object recognition algorithm based on contour feature description[D]. Shenyang:Shenyang Ligong University, 2019. [23] WANG Shengchun, WANG Hao, ZHOU Yunlai, et al. Automatic laser profile recognition and fast tracking for structured light measurement using deep learning and template matching[J]. Measurement, 2021, 169:108362. [24] 华媛蕾, 刘万军. 改进混合高斯模型的运动目标检测算法[J]. 计算机应用, 2014, 34(2):580-584. HUA Yuanlei, LIU Wanjun. Moving object detection algorithm of improved Gaussian mixture model[J]. Journal of Computer Applications, 2014, 34(2):580-584. [25] 徐亮, 魏锐. 基于Canny算子的图像边缘检测优化算法[J]. 科技通报, 2013, 29(7):127-131, 150. XU Liang, WEI Rui. An optimal algorithm of image edge detection based on canny[J]. Bulletin of Science and Technology, 2013, 29(7):127-131, 150. |