[1] 王家耀, 钱海忠. 制图综合知识及其应用[J]. 武汉大学学报(信息科学版), 2006, 31(5):382-386, 439. WANG Jiayao, QIAN Haizhong. Cartographic-generalization-knowledge and its application[J]. Geomatics and Information Science of Wuhan University, 2006, 31(5):382-386, 439. [2] 武芳, 巩现勇, 杜佳威. 地图制图综合回顾与前望[J]. 测绘学报, 2017, 46(10):1645-1664. WU Fang, GONG Xianyong, DU Jiawei. Overview of the research progress in automated map generalization[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10):1645-1664. [3] 钱海忠, 武芳, 王家耀. 自动制图综合及其过程控制的智能化研究[M]. 北京:测绘出版社, 2012. QIAN Haizhong, WU Fang, WANG Jiayao. Study of automated cartographic generalization and intelligentized generalization process control[M]. Beijing:Surveying and Mapping Press, 2012. [4] TOUYA G, ZHANG X, LOKHAT I. Is deep learning the new agent for map generalization[J]. International Journal of Cartography, 2019, 5(2-3):142-157. [5] 王家耀, 范亦爱, 韩同春, 等. 普通地图制图综合原理[M]. 北京:测绘出版社, 1993. WANG Jiayao, FAN Yi'ai, Han Tongchun, et al. Cartographic generalization theory of general map[M]. Beijing:Surveying and Mapping Press, 1993. [6] 武芳, 邓红艳. 基于遗传算法的线要素自动化简模型[J]. 测绘学报, 2003, 32(4):349-355. WU Fang, DENG Hongyan. Using genetic algorithms for solving problems in automated line simplification[J]. Acta Geodaetica et Cartographica Sinica, 2003, 32(4):349-355. [7] 郑春燕, 郭庆胜, 胡华科. 基于蚁群优化算法的线状目标简化模型[J]. 测绘学报, 2011, 40(5):635-638. ZHENG Chunyan, GUO Qingsheng, HU Huake. The simplification model of linear objects based on ant colony optimization algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(5):635-638. [8] 李进, 马劲松, 沈婕, 等. 一种基于顶点聚类的线要素简化算法改进[J]. 测绘科学技术学报, 2013, 30(5):525-529, 534. LI Jin, MA Jinsong, SHEN Jie, et al. Improvements of linear features simplification algorithm based on vertexes clustering[J]. Journal of Geomatics Science and Technology, 2013, 30(5):525-529, 534. [9] 段佩祥, 钱海忠, 何海威, 等. 基于支持向量机的线化简方法[J]. 武汉大学学报(信息科学版), 2020, 45(5):744-752, 783. DUAN Peixiang, QIAN Haizhong, HE Haiwei, et al. A line simplification method based on support vector machine[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5):744-752, 783. [10] CHENG Boyan, LIU Qiang, LI Xiaowen, et al. Building simplification using backpropagation neural networks:a combination of cartographers' expertise and raster-based local perception[J]. GIScience & Remote Sensing, 2013, 50(5):527-542. [11] MA L. Features extraction of buildings and generalization using deep learning[C]//Proceedings of the 28th International Cartographic Conference. Washington, DC, USA:[s.n.], 2017. [12] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[C]//Proceedings of 2014 Conference on Advances in Neural Information Processing Systems. Montreal, Canada:[s.n.], 2014. [13] KANG Yuhao, GAO Song, ROTH R E. Transferring multiscale map styles using generative adversarial networks[J]. International Journal of Cartography, 2019, 5(2-3):115-141. [14] COURTIAL A, El AYEDI A, TOUYA G, et al. Exploring the potential of deep learning segmentation for mountain roads generalisation[J]. ISPRS International Journal of Geo-Information, 2020, 9(5):338-359. [15] DU Jiawei, WU Fang, XING Ruixing, et al. Segmentation and sampling method for complex polyline generalization based on a generative adversarial network[J]. Geocarto International, 2021. DOI:10.1080/10106049.2021.1878288. [16] ZHANG Cha, MA Yunqian. Ensemble machine learning:methods and applications[M]. New York, NY:Springer-Verlag, 2012. [17] 杜佳威. 海岸线自动化简方法研究[D]. 郑州:信息工程大学, 2018. DU Jiawei. Research on automated coastline simplification methods[D]. Zhengzhou:Information Engineering University, 2018. [18] SAALFELD A. Topologically consistent line simplification with the Douglas-Peucker algorithm[J]. Cartography and Geographic Information Science, 1999, 26(1):7-18. [19] 翟京生, 陆毅. 数字海图线性特征的识别、量测与综合[J]. 测绘学报, 2000, 29(3):273-279. ZHAI Jingsheng, LU Yi. Recognition, measurement and generalization for line features in digital nautical chart[J]. Acta Geodaetica et Cartographica Sinica, 2000, 29(3):273-279. [20] HAYKIN S. Neural networks and learning machines[M]. 3rd ed. New York, NY:Pearson Hall, 2008. [21] HARRIS S L, HARRIS D M. Digital design and computer architecture[M]. San Francisco, CA:Morgan Kaufmann, 2015. [22] LI Zhilin, OPENSHAW S. Algorithms for automated line generalization based on a natural principle of objective generalization[J]. International Journal of Geographical Information Systems, 1992, 6(5):373-389. [23] 孙家广, 胡事民. 计算机图形学基础教程[M]. 2版. 北京:清华大学出版社, 2009. SUN Jiaguang, HU Shimin. Fundamentals and principles of computer graphics[M]. 2nd ed. Beijing:Tsinghua University Press, 2009. [24] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems 25:26th Annual Conference on Neural Information Processing Systems 2012. Lake Tahoe, NV:NIPS, 2012:1097-1105. [25] 何海威, 钱海忠, 谢丽敏, 等. 立交桥识别的CNN卷积神经网络法[J]. 测绘学报, 2018, 47(3):385-395. DOI:10.11947/j.AGCS.2018.20170265. HE Haiwei, QIAN Haizhong, XIE Limin, et al. Interchange recognition method based on CNN[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(3):385-395. DOI:10.11947/j.AGCS.2018.20170265. [26] 陆川伟, 孙群, 陈冰, 等. 车辆轨迹数据的道路学习提取法[J]. 测绘学报, 2020, 49(6):692-702. DOI:10.11947/j.AGCS.2020.20190305. LU Chuanwei, SUN Qun, CHEN Bing, et al. Road learning extraction method based on vehicle trajectory data[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6):692-702. DOI:10.11947/j.AGCS.2020.20190305. [27] IOFFE S, SZEGEDY C. Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning. Lille, France:JMLR.org, 2015. [28] SANTURKAR S, TSIPRAS D, ILYAS A, et al. How does batch normalization help optimization?[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montreal, Canada:Curran Associates Inc., 2018. [29] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV:IEEE, 2016:770-778. [30] YAN Bo, JANOWICZ K, MAI Gengchen, et al. xNet+SC:classifying places based on images by incorporating spatial contexts[C]//Proceedings of the 10th International Conference on Geographic Information Science (GIScience 2018). Melbourne, Australia:Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018. [31] JOSHI M, KUMAR V, AGARWAL R. Evaluating boosting algorithms to classify rare classes:comparison and improvements[C]//Proceedings of 2001 IEEE International Conference on Data Mining. San Jose, CA:IEEE, 2001:257-264. [32] 杜佳威, 武芳, 李靖涵, 等. 一种河口湾海岸线渐进化简方法[J]. 测绘学报, 2018, 47(4):547-556. DOI:10.11947/j.AGCS.2018.20170440. DU Jiawei, WU Fang, LI Jinghan, et al. A progressive simplification method for the estuary coastline[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(4):547-556. DOI:10.11947/j.AGCS.2018.20170440. [33] KINGMA D P, BA J L. Adam:a method for stochastic optimization[C]//Proceedings of 2015 International Conference on Learning Representations. Ithaca, NY:ICLR, 2015. [34] 何海威, 钱海忠, 段佩祥, 等. 线要素化简及参数自动设置的案例推理方法[J]. 武汉大学学报(信息科学版), 2020, 45(3):344-352. HE Haiwei, QIAN Haizhong, DUAN Peixiang, et al. Automatic line simplification algorithm selecting and parameter setting based on case-based reasoning[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3):344-352. [35] KRONENFELD B J, STANISLAWSKI L V, BUTTENFIELD B P, et al. Simplification of polylines by segment collapse:minimizing areal displacement while preserving area[J]. International Journal of Cartography, 2020, 6(1):22-46. [36] CHROBAK T, SZOMBARA S, KOZOŁ K, et al. A method for assessing generalized data accuracy with linear object resolution verification[J]. Geocarto International, 2017, 32(3):238-256. [37] 刘鹏程. 形状识别在地图综合中的应用研究[D]. 武汉:武汉大学, 2009. LIU Pengcheng. Applications of shape recognition in map generalization[D]. Wuhan:Wuhan University, 2009. [38] 钱海忠, 何海威, 王骁, 等. 采用三元弯曲组划分的线要素化简方法[J]. 武汉大学学报(信息科学版), 2017, 42(8):1096-1103. QIAN Haizhong, HE Haiwei, WANG Xiao, et al. Line feature simplification method based on bend group division[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8):1096-1103. [39] RAPOSO P. Scale-specific automated line simplification by vertex clustering on a hexagonal tessellation[J]. Cartography and Geographic Information Science, 2013, 40(5):427-443. [40] 朱鲲鹏, 武芳, 王辉连, 等. Li-Openshaw算法的改进与评价[J]. 测绘学报, 2007, 36(4):450-456. ZHU Kunpeng, WU Fang, WANG Huilian, et al. Improvement and assessment of Li-Openshaw algorithm[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(4):450-456. [41] DU Jiawei, WU Fang, XING Ruixing, et al. An automated approach to coastline simplification for maritime structures with collapse operation[J]. Marine Geodesy, 2021, 44(3):157-195. [42] YAN Xiongfeng, AI Tinghua, YANG Min, et al. Graph convolutional autoencoder model for the shape coding and cognition of buildings in maps[J]. International Journal of Geographical Information Science, 2021, 35(3):490-512. |