[1] 李伟, 郑新奇. 结合VIIRS和监测数据插值的北京雾霾监测方法[J]. 测绘学报, 2015, 44(S1):123-128. DOI:10.11947/j.AGCS.2015.F022. LI Wei, ZHENG Xinqi. A haze monitoring method combined VIIRS images with real-time observation data interpolation in Beijing[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(S1):123-128. DOI:10.11947/j.AGCS.2015.F022. [2] LI Can, HSU N C, TSAY S C. A study on the potential applications of satellite data in air quality monitoring and forecasting[J]. Atmospheric Environment, 2011, 45(22):3663-3675. [3] 沈焕锋, 李同文. 大气PM2.5遥感制图研究进展[J]. 测绘学报, 2019, 48(12):1624-1635. DOI:10.11947/j.AGCS.2019.20190456. SHEN Huanfeng, LI Tongwen. Progress of remote sensing mapping of atmospheric PM2.5[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12):1624-1635. DOI:10.11947/j.AGCS.2019.20190456. [4] KAMPA M, CASTANAS E. Human health effects of air pollution[J]. Environmental Pollution, 2008, 151(2):362-367. [5] KURT A, OKTAY A B. Forecasting air pollutant indicator levels with geographic models 3 days in advance using neural networks[J]. Expert Systems with Applications, 2010, 37(12):7986-7992. [6] DENG Xuejiao, TIE Xuexi, WU Dui, et al. Long-term trend of visibility and its characterizations in the Pearl river delta (PRD) region, China[J]. Atmospheric Environment, 2008, 42(7):1424-1435. [7] KIM Y, FU J S, MILLER T L. Improving ozone modeling in complex terrain at a fine grid resolution:partⅠ:examination of analysis nudging and all PBL schemes associated with LSMs in meteorological model[J]. Atmospheric Environment, 2010, 44(4):523-532. [8] GENG Guannan, ZHANG Qiang, MARTIN R V, et al. Estimating long-term PM2.5 concentrations in China using satellite-based aerosol optical depth and a chemical transport model[J]. Remote Sensing of Environment, 2015, 166:262-270. [9] PAN Lin, SUN Baosheng, WANG Wei. City air quality forecasting and impact factors analysis based on grey model[J]. Procedia Engineering, 2011(12):74-79. [10] ENGEL-COX J, OANH N T K, VAN DONKELAAR A, et al. Toward the next generation of air quality monitoring:particulate matter[J]. Atmospheric Environment, 2013, 80:584-590. [11] ZHU Suling, LIAN Xiuyuan, WEI Lin, et al. PM2.5 forecasting using SVR with PSOGSA algorithm based on CEEMD, GRNN and GCA considering meteorological factors[J]. Atmospheric Environment, 2018, 183:20-32. [12] STADLOBER E, HÖRMANN S, PFEILER B. Quality and performance of a PM10 daily forecasting model[J]. Atmospheric Environment, 2008, 42(6):1098-1109. [13] 付倩娆. 基于多元线性回归的雾霾预测方法研究[J]. 计算机科学, 2016, 43(S1):526-528. FU Qianrao. Research on haze prediction based on multivariate linear regression[J]. Computer Science, 2016, 43(S1):526-528. [14] HU Xuefei, BELLE J H, MENG Xia, et al. Estimating PM2.5 concentrations in the conterminous united states using the random forest approach[J]. Environmental Science & Technology, 2017, 51(12):6936-6944. [15] PEREZ P, REYES J. An integrated neural network model for PM10 forecasting[J]. Atmospheric Environment, 2006, 40(16):2845-2851. [16] FENG Yu, ZHANG Wenfang, SUN Dezhi, et al. Ozone concentration forecast method based on genetic algorithm optimized back propagation neural networks and support vector machine data classification[J]. Atmospheric Environment, 2011, 45(11):1979-1985. [17] MAO Wenjing, WANG Weilin, JIAO Limin, et al. Modeling air quality prediction using a deep learning approach:method optimization and evaluation[J]. Sustainable Cities and Society, 2021, 65(2):102-118. [18] KOLEHMAINEN M, MARTIKAINEN H, RUUSKANEN J. Neural networks and periodic components used in air quality forecasting[J]. Atmospheric Environment, 2001, 35(5):815-825. [19] VOUKANTSIS D, KARATZAS K, KUKKONEN J, et al. Intercomparison of air quality data using principal component analysis, and forecasting of PM10 and PM2.5 concentrations using artificial neural networks, in Thessaloniki and Helsinki[J]. Science of the Total Environment, 2011, 409(7):1266-1276. [20] WANG Xinpeng, SUN Wenbin. Meteorological parameters and gaseous pollutant concentrations as predictors of daily continuous PM2.5 concentrations using deep neural network in Beijing-Tianjin-Hebei, China[J]. Atmospheric Environment, 2019, 211:128-137. [21] ZHAN Yu, LUO Yuzhou, DENG Xunfei, et al. Spatiotemporal prediction of continuous daily PM2.5 concentra-tions across China using a spatially explicit machine learning algorithm[J]. Atmospheric Environment, 2017, 155:129-139. [22] WANG Weilin, ZHAO Suli, JIAO Limin, et al. Estimation of PM2.5 concentrations in China using a spatial back propagation neural network[J]. Scientific Reports, 2019, 9(1):1378-1387. [23] MA Jun, DING Yuexiong, CHENG J C P, et al. A Lag-FLSTM deep learning network based on Bayesian optimization for multi-sequential-variant PM2.5 prediction[J]. Sustainable Cities and Society, 2020, 60(9):1022-1037. [24] XU Fulong, LI Zishen, ZHANG Kefei, et al. An investigation of optimal machine learning methods for the prediction of ROTI[J]. Journal of Geodesy and Geoinformation Science, 2020, 3(2):1-15. DOI:10.11947/j.JGGS.2020.0201. [25] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780. [26] LI Xiang, PENG Ling, YAO Xiaojing, et al. Long short-term memory neural network for air pollutant concentration predictions:method development and evaluation[J]. Environmental Pollution, 2017, 231:997-1004. [27] ZHAO Jiachen, DENG Fang, CAI Yeyun, et al. Long short-term memory-Fully connected (LSTM-FC) neural network for PM2.5 concentration prediction[J]. Chemosphere, 2019, 220:486-492. [28] PAK U, KIM C, RYU U, et al. A hybrid model based on convolutional neural networks and long short-term memory for ozone concentration prediction[J]. Air Quality, Atmosphere & Health, 2018, 11(8):883-895. [29] WEN Congcong, LIU Shufu, YAO Xiaojing, et al. A novel spatiotemporal convolutional long short-term neural network for air pollution prediction[J]. Science of the Total Environment, 2019, 654:1091-1099. [30] BAI Yun, LI Yong, WANG Xiaoxue, et al. Air pollutants concentrations forecasting using back propagation neural network based on wavelet decomposition with meteorological conditions[J]. Atmospheric Pollution Research, 2016, 7(3):557-566. [31] ZHANG Boen, JIAO Limin, XU Gang, et al. Influences of wind and precipitation on different-sized particulate matter concentrations (PM2.5, PM10, PM2.5-10)[J]. Meteorology and Atmospheric Physics, 2018, 130(3):383-392. [32] RESHEF D N, RESHEF Y A, FINUCANE H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334(6062):1518-1524. [33] LI Tongwen, SHEN Huanfeng, ZENG Chao, et al. Point-surface fusion of station measurements and satellite observations for mapping PM2.5 distribution in China:methods and assessment[J]. Atmospheric Environment, 2017, 152:477-489. [34] LI Tiantian, GUO Yuming, LIU Yang, et al. Estimating mortality burden attributable to short-term PM2.5 exposure:a national observational study in China[J]. Environment International, 2019, 125:245-251. |