Acta Geodaetica et Cartographica Sinica ›› 2022, Vol. 51 ›› Issue (4): 556-567.doi: 10.11947/j.AGCS.2022.20220019
• The 90th Anniversary of Tongji University Surveying and Mapping Discipline • Previous Articles Next Articles
LIU Chun1, JIA Shoujun1, WU Hangbin1, HUANG Wei1, ZHENG Ning2, AKRAM Akbar1
Received:
2021-11-17
Revised:
2022-01-26
Published:
2022-04-24
Supported by:
CLC Number:
LIU Chun, JIA Shoujun, WU Hangbin, HUANG Wei, ZHENG Ning, AKRAM Akbar. Scene cognition pattern of point cloud-generalization point cloud[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 556-567.
[1] 杨必胜,梁福逊,黄荣刚.三维激光扫描点云数据处理研究进展、挑战与趋势[J].测绘学报,2017,46(10):1509-1516. DOI:10.11947/j. AGCS.2017.20170351. YANG Bisheng, LIANG Fuxun, HUANG Ronggang. Progress, challenges and perspectives of 3D LiDAR point cloud processing[J]. Acta Geodaetica et Cartographica Sinica, 2017,46 (10): 1509-1516. DOI:10.11947/j.AGCS.2017.20170351. [2] HUSSAIN R, ZEADALLY S. Autonomous cars: research results, issues, and future challenges [J]. IEEE Communications Surveys and Tutorials, 2018, 21(2): 1275-1313. DOI: 10.1109/COMST.2018.2869360. [3] SVNDERHAUF N, PHAM T T, LATIF Y, et al. Meaningful maps with object-oriented semantic mapping[C]//Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). [S.l.]: IEEE, 2017: 5079-5085. [4] 陈军,刘万增,武吴,等.智能化测绘的基本问题与发展方向[J].测绘学报, 2021, 50(8): 995-1005. DOI: 10.11947/j. AGCS.2021.20210235. CHEN Jun, LIU Wanzeng, WU Wu, et al. Smart surveying and mapping: fundamental issues and research agenda[J]. Acta Geodaetica et Cartographica Sinica, 2021,50(8):995-1005. DOI:10.11947/j. AGCS.2021.20210235. [5] 宁津生.测绘科学与技术转型升级发展战略研究[J].武汉大学学报(信息科学版),2019,44(1):1-9. DOI:10.13203/j.whugis20180477. NING Jinsheng. Research on the development strategy of surveying and mapping science and technology transformation and upgrading [J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 1-9.DOI:10.13203/j.whugis20180477. [6] 李德仁.展望大数据时代的地球空间信息学[J].测绘学报,2016,45(4):379-384. DOI:10. 11947/j. AGCS. 2016. 20160057. LI Deren. Towards geo-spatial information science in big data era[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45 (4):379-384. DOI: 10. 11947/j. AGCS. 2016. 20160057. [7] 蒋赫敏,钟若飞,谢东海.智能手机移动测量方法的设计与实现[J].测绘通报,2019(6):71-76. DOI: 10.13474/j.cnki.11-2246.2019.0187. JIANG Hemin, ZHONG Ruofei, XIE Donghai. Design and implementation of mobile measurement method for smartphone [J]. Bulletin of Surveying and Mapping, 2019(6):71-76. DOI: 10.13474/j.cnki.11-2246.2019.0187. [8] ZHANG Meina, LÜ Xiaolan, QIU Wei, et al. Calculation method of leaf area density based on three-dimensional laser point cloud[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017. DOI: 10.6041/j.issn.1000-1298.2017.11.021. [9] 卢昊,庞勇,李增元,等.全波形机载激光雷达绝对辐射定标与不确定性分析[J]. 遥感学报, 2020,24(11): 1353-1362. DOI: 10.11834/jrs.20208376. LU Hao, PANG Yong, LI Zengyuan, et al. Uncertainty analysis of the absolute radiometric calibration of full waveform airborne LiDAR[J]. Journal of Remote Sensing, 2020,24(11): 1353-1362. DOI: 10.11834/jrs.20208376. [10] 张宗华,刘巍,刘国栋,等.三维视觉测量技术及应用进展[J].中国图象图形学报, 2021,26 (6):1483-1502. DOI:10. 11834/jig. 200841. ZHANG Zonghua, LIU Wei, LIU Guodong, et al. Overview of the development and application of 3D vision measurement technology[J]. Journal of Image and Graphics, 2021,26 (6):1483-1502. DOI:10. 11834/jig. 200841. [11] NIEMEYER J, ROTTENSTEINER F, SOERGEL U. Contextual classification of lidar data and building object detection in urban areas[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2014, 87(1):152-165. DOI:10.1016/j.isprsjprs.2013.11.001. [12] 郝婧蕾,赵永强,赵海盟,等.偏振多光谱机器视觉的高反光无纹理目标三维重构方法[J].测绘学报,2018,47(6):816-824.DOI: 10.11947/j.AGCS.2018.20170624. HAO Jinglei, ZHAO Yongqiang, ZHAO Haimeng, et al. 3D reconstruction of high-reflective and textureless targets based on multispectral polarization and machine vision[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47 (6): 816-824. DOI: 10.11947/j. AGCS.2018.20170624. [13] STURM J, ENGELHARD N, ENDRES F, et al. A benchmark for the evaluation of RGB-D SLAM systems[C]//Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2012: 573-580. DOI: 10.1109/IROS.2012.6385773. [14] 周建丰,邓学良.一种多线结构光合成编码的三维重建方法[J].现代计算机,2021,27(23):119-123. DOI:10.3969/j.issn.1007-1423.2021.23.021. ZHOU Jianfeng, DENG Xueliang. A three-dimensional reconstruction method for photo synthetic coding of multi-line structure [J]. Modern Computer, 2021,27(23):119-123. DOI:10.3969/j.issn.1007-1423.2021.23.021. [15] LAFOREST L, HASHEMINASAB S M, ZHOU T, et al. New strategies for time delay estimation during system calibration for UAV-based GNSS/INS-assisted imaging systems[J]. Remote Sensing, 2019, 11(15):1811. DOI:10.3390/rs11151811. [16] LI Jianping, YANG Bisheng, CHEN Chi, et al. NRLI-UAV: non-rigid registration of sequential raw laser scans and images for low-cost UAV LiDAR point cloud quality improvement[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 158:123-145. DOI:10.1016/j.isprsjprs.2019.10.009. [17] 郭晨,许强,董秀军,等.复杂山区地质灾害机载激光雷达识别研究[J].武汉大学学报(信息科学版), 2021, 46(10): 1538-1547. DOI:10.13203/j. whugis20210121. GUO Chen, XU Qiang, DONG Xiujun, et al. Geohazard recognition by airborme LiDAR technology in complex mountain areas[J]. Geomatics and Information Science of Wuhan University, 2021, 46(10): 1538-1547. DOI: 10.13203/j. whugis20210121. [18] 曾伟生,孙乡楠,王六如,等.基于机载激光雷达数据的森林蓄积量模型研建[J].林业科学,2021,57(2):31-38. DOI: 10. 11707 /j.1001-7488. 20210204. ZENG Weisheng, SUN Xiangnan, WANG Liuru, et al. Development of forest stand volume models based on airborne laser scanning data[J]. Scientia Silvae Sinicae, 2021,57(2):31-38. DOI: 10. 11707 /j.1001-7488. 20210204. [19] 刘经南,吴杭彬,郭迟,等.高精度道路导航地图的进展与思考[J].中国工程科学,2018,20(2):99-105. DOI: 10.15302/J-SSCAE-2018.02.015. LIU Jingnan, WU Hangbin, GUO Chi, et al. Progress and consideration of high precision road navigation map[J]. Strategic Study of CAE, 2018,20(2):99-105. DOI: 10.15302/J-SSCAE-2018.02.015. [20] 李德仁,张良培,夏桂松.遥感大数据自动分析与数据挖掘[J].测绘学报,2014,43(12): 1211-1216. DOI: 10. 13485/j. cnki. 11-2089. 2014. 0187. LI Deren, ZHANG Liangpei, XIA Guisong. Automatic analysis and mining of remote sensing big data[J]. Acta Geodaetica et Cartographica Sinica, 2014,43(12):1211-1216. DOI: 10. 13485/j. cnki. 11-2089. 2014. 0187. [21] XIE Y, TIAN J, ZHU X X. Linking points with labels in 3D: a review of point cloud semantic segmentation [J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(4): 38-59. DOI: 10.1109/MGRS.2019.2937630. [22] 郭华东.科学大数据——国家大数据战略的基石[J].中国科学院院刊, 2018, 33(8): 768-773. DOI: 10.16418/j.issn.1000-3045.2018.08.001. GUO Huadong. Scientific big data—a footstone of national strategy for big data[J]. Bulletin of Chinese Academy of Sciences, 2018,33(8):768-773. DOI: 10.16418/j.issn.1000-3045.2018.08.001. [23] LANDRIEU L, SIMONOVSKY M. Large-scale point cloud semantic segmentation with superpoint graphs[C]//Proceedings of 2018 IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2018: 4558-4567. DOI: 10.1109/CVPR.2018.00479. [24] ZHANG Jiaying, ZHAO Xiaoli, CHEN Zheng, et al. A review of deep learning-based semantic segmentation for point cloud[J]. IEEE Access, 2019(7):179118-179133. DOI:10.1109/ACCESS.2019.2958671. [25] 李勇, 佟国峰, 杨景超, 等. 三维点云场景数据获取及其场景理解关键技术综述[J]. 激光与光电子学进展, 2019, 56(4): 21-34. DOI:10.3788/LOP56.040002. LI Yong, TONG Guofeng, YANG Jingchao, et al. 3D point cloud scene data acquisition and its key technologies for scene understanding[J]. Laser & Optoelectronics Progress, 2019, 56(4): 21-34. DOI:10.3788/LOP56.040002. [26] 郭王,程效军.基于激光强度分类的机载与地面激光雷达点云配准方法[J].激光与光电子学进展,2018,55(6):409-416. DOI:10. 3788/LOP55. 062803. GUO Wang, CHENG Xiaojun. Registration method for airborne and terrestrial light detection and ranging point cloud based on laser intensity classification[J]. Laser & Optoelectronics Progress, 2018,55(6):409-416. DOI:10. 3788/LOP55. 062803. [27] 龙川,苟永刚,明镜,等.车载移动测量系统研制与应用实践[J].测绘通报, 2021(4): 120-125. DOI: 10.13474/j.cnki.11-2246.2021.0122. LONG Chuan, GOU Yonggang, MING Jing, et al. Development and application of vehicle mobile mapping system[J]. Bulletin of Surveying and Mapping, 2021(4): 120-125. DOI: 10.13474/j.cnki.11-2246.2021.0122. [28] BRAUN A, TUTTAS S, BORRMANN A, et al. Improving progress monitoring by fusing point clouds, semantic data and computer vision[J]. Automation in Construction, 2020, 116(C). DOI:10.1016/j.autcon.2020.103210. [29] KIM S, KIM S, LEE D E. Sustainable application of hybrid point cloud and BIM method for tracking construction progress[J]. Sustainability, 2020, 12. DOI:10.3390/su12104106. [30] 袁修孝.POS辅助光束法区域网平差[J].测绘学报,2008,37(3):342-348. YUAN Xiuxiao. POS-supported bundle block adjustment[J]. Acta Geodaetica et Cartographica Sinica, 2008,37(3):342-348. [31] JIA Shoujun, LIU Chun, WU Hangbin, et al. A cross-correction LiDAR SLAM method for high-accuracy 2D mapping of problematic scenario[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 171(5):367-384. DOI:10.1016/j.isprsjprs.2020.11.004. [32] 杨必胜,董震.点云智能研究进展与趋势[J].测绘学报,2019,48(12):1575-1585. DOI:10.11947/j.AGCS.2019.20190465. YANG Bisheng, DONG Zhen. Progress and perspective of point cloud intelligence[J]. Acta Geodaetica et Cartographica Sinica, 2019,48(12): 1575-1585. DOI:10.11947/j.AGCS.2019.20190465. [33] CHEN Y, GÉRARD M. Object modeling by registration of multiple range images[J]. Image and Vision Computing, 2002, 10(3):145-155. DOI:10.1016/0262-8856(92)90066-C. [34] JI Shijun, REN Yongcong, ZHAO Ji, et al. An improved method for registration of point cloud[J]. Optik-International Journal for Light and Electron Optics, 2017:S0030402617300517. DOI:10.1016/j.ijleo.2017.01.041. [35] BESL P J, MCKAY H D. A method for registration of 3D shapes[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1992, 14(2):239-256. DOI:10.1109/34.121791. [36] CHETVERIKOV D, STEPANOV D, KRSEK P. Robust Euclidean alignment of 3D point sets: the trimmed iterative closest point algorithm[J]. Image and Vision Computing, 2005, 23(3):299-309. DOI:10.1016/j.imavis.2004.05.007. [37] ZASS R, SHASHUA A. Probabilistic graph and hypergraph matching[C]//Proceedings of 2008 IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2008: 1-8. DOI:10.1109/CVPR.2008.4587500. [38] EVANGELIDIS G D, KOUNADES-BASTIAN D, HORAUD R, et al. A generative model for the joint registration of multiple point sets[C]//Proceedings of 2014 European Conference on Computer Vision. Berlin, Germany: Springer International Publishing, 2014, 109-122. DOI:10.1007/978-3-319-10584-0_8. [39] RUSU R B, BLODOW N, BEETZ M. Fast point feature histograms (FPFH) for 3D registration[C]//Proceedings of 2009 IEEE International Conference on Robotics and Automation. [S.l.]: IEEE, 2009: 3212-3217. [40] TOMBARI F, SALTI S, D STEFANO L. Unique signatures of histograms for local surface description[C]//Proceedings of 2010 European Conference on Computer Vision. Berlin, Germany: Springer International Publishing, 2010: 356-369. DOI:10.1007/978-3-642-15558-1_26. [41] LIU Y, KONG D, ZHAO D, et al. A point cloud registration algorithm based on feature extraction and matching[J]. Mathematical Problems in Engineering, 2018, 2018(PT.17):1-9. DOI:10.1155/2018/7352691. [42] ZAN G, ZHOU C, WEGNER J D, et al. The perfect match: 3D point cloud matching with smoothed densities[C]//Proceedings of 2019 IEEE Conference on Computer Vision and Pattern Recognition. Long Beack, CA, USA: IEEE, 2019, 5545-5554. DOI: 10.1109/CVPR.2019.00569. [43] YUAN W A, BY A, YC B, et al. JoKDNet: a joint keypoint detection and description network for large-scale outdoor TLS point clouds registration[J]. International Journal of Applied Earth Observation and Geoinformation, 2021,104(15)102534. DOI:10.1016/j.jag.2021.102534. [44] MENG D, Du S, ZHU J, et al. Robust registration of partially overlapping point sets via genetic algorithm with growth operator[J]. Iet Image Processing, 2014, 8(10):582-590. DOI:10.1049/iet-ipr.2013.0545. [45] LEI H, JIANG G, QUAN L. Fast descriptors and correspondence propagation for robust global point cloud registration[J]. IEEE Transactions on Image Processing, 2017, 26(8):3614-3623. DOI:10.1109/TIP.2017.2700727. [46] XIN M, LI B, WEI X, et al. Rapid registration method by using partial 3D point clouds[J]. Optik-International Journal for Light and Electron Optics, 2021(2):167764. DOI:10.1016/j.ijleo.2021.167764. [47] WEINMANN M, URBAN S, HINZ S, et al. Distinctive 2D and 3D features for automated large-scale scene analysis in urban areas[J]. Computers & Graphics, 2015, 49:47-57. DOI:10.1016/j.cag.2015.01.006. [48] LI H X, XU L D. Feature space theory-a mathematical foundation for data mining [J]. Knowledge-Based Systems, 2001, 14(5-6): 253-257. DOI:10.1016/S0950-7051(01)00103-4. [49] WEINMANN M, JUTZI B, HINZ S, et al. Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 105(7): 286-304. DOI:10.1016/j.isprsjprs.2015.01.016. [50] BO G, HUANG X, FAN Z, et al. Classification of airborne laser scanning data using JointBoost[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 100: 71-83. DOI:10.1016/j.isprsjprs.2014.04.015. [51] WEINMANN M, JUTZI B, MALLET C. Semantic 3D scene interpretation: a framework combining optimal neighborhood size selection with relevant features[J]. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2014, II-3: 181-188. DOI:10.5194/isprsannals-II-3-181-2014. [52] SALTI S, TOMBAI F, STEFANO L D. SHOT: unique signatures of histograms for surface and texture description [J]. Computer Vision and Image Understanding, 2014, 125(1): 251-264. DOI:10.1016/j.cviu.2014.04.011. [53] LIU F C, WANG S J, WANG J R, et al. 3D model retrieval based on fuzzy correspondences and hybrid shape features[C]//Proceedings of 2016 International Conference on Virtual Reality and Visualization (ICVRV). [S.l.]: IEEE, 2016: 358-363. DOI: 10.1109/ICVRV.2016.67. [54] EITZ M, RICHTER R, BOUBEKEUR T, et al. Sketch-based shape retrieval[J]. Acm Transactions on Graphics, 2012, 31(4):1-10. DOI:10.1145/2185520.2185527. [55] GUO Y, SOHEL F, BENNAMOUN M, et al. Rotational projection statistics for 3D local surface description and object recognition[J]. International Journal of Computer Vision, 2013, 105(1):63-86. DOI: 10.1007/s11263-013-0627-y. [56] DONG Zhen, YANG Bisheng, LIU Yuan, et al. A novel binary shape context for 3D local surface description[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130: 431-452. DOI:10.1016/j.isprsjprs.2017.06.012. [57] KHOURY M, ZHOU Q Y, KOLTUN V. Learning compact geometric features [C]//Proceedings of 2017 IEEE international conference on computer vision. Venice, Italy: IEEE, 2017: 153-161. DOI:10.1109/ICCV.2017.26. [58] LI Nan, PFEIFER N, LIU Chun. Tensor-based sparse representation classification for urban airborne LiDAR points[J]. Remote Sensing, 2017, 9(12):1216. DOI: 10.3390/rs9121216. [59] 陈龙,刘坤华,周宝定,等.多智能体协同高精地图构建关键技术研究[J].测绘学报,2021,50(11):1447-1456. DOI:10.11947/j.AGCS.2021.20210259. CHEN Long, LIU Kunhua, ZHOU Baoding, et al. Key technologies of multi-agent collaborative high definition map construction[J]. Acta Geodaetica et Cartographica Sinica, 2021,50(11): 1447-1456. DOI: 10.11947/j.AGCS.2021.20210259. [60] ZHAO Hengshuang, SHI Jianping, QI Xiaojuan, et al. Pyramid scene parsing network[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). [S.l.]: IEEE, 2017: 2881-2890. DOI:10.1109/CVPR.2017.660. [61] FENG Mingtao, ZHANG Liang, LIN Xuefei, et al. Point attention network for semantic segmentation of 3D point clouds[J]. Pattern Recognition, 2020,107: 107446. DOI: 10.1016/j.patcog.2020.107446. [62] WWAB C, LDAB C, QEAB C, et al. Context-sensitive zero-shot semantic segmentation model based on meta-learning[J]. Neurocomputing, 2021, 465(20): 465-475. DOI: 10.1016/j.neucom.2021.08.120. [63] WEINMANN M, SCHMIDT A, MALLET C, et al. Contextual classification of point cloud data by exploiting individual 3D neigbourhoods [J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2015, 2(W4): 271-278. DOI: 10.1016/j.neucom.2021.08.120. [64] FANG H, LAFARGE F. Pyramid scene parsing network in 3D: improving semantic segmentation of point clouds with multi-scale contextual information[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 154: 246-258. DOI:10.1016/j.isprsjprs.2019.06.010. [65] LUO Haifeng, CHEN Chongcheng, FANG Lina, et al. MS-RRFSegNet: multiscale regional relation feature segmentation network for semantic segmentation of urban scene point clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(12): 8301-8315. DOI:10.1109/TGRS.2020.2985695. [66] 张继贤,林祥国,梁欣廉.点云信息提取研究进展和展望[J].测绘学报, 2017,46 (10): 1460-1469. DOI: 10.11947/j. AGCS.2017.20170345. ZHANG Jixian, LIN Xiangguo, LIANG Xinlian. Advances and prospects of information extraction from point clouds[J]. Acta Geodaetica et Cartographica Sinica, 2017,46(10): 1460-1469. DOI:10.11947/j.AGCS.2017.20170345. [67] ZHANG Liqiang, ZHANG Liang. Deep learning-based classification and reconstruction of residential scenes from large-scale point clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(4):1887-1897. DOI:10.1109/TGRS.2017.2769120. [68] SU H, MAJI S, KALOGERAKIS E, et al. Multi-view convolutional neural networks for 3D shape recognition[C]//Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, Chile: IEEE, 2015: 945-953. DOI:10.1109/ICCV.2015.114. [69] BOULCH A, GUERRY Y, SAUX B L, et al. SnapNet: 3D point cloud semantic labeling with 2D deep segmentation networks[J]. Computers & Graphics, 2017, 71(APR.):189-198. DOI:10.1016/j.cag.2017.11.010. [70] MATURANA D, SCHERER S. VoxNet: a 3D convolutional neural network for real-time object recognition[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). [S.l.]: IEEE, 2015: 922-928. DOI:10.1109/IROS.2015.7353481. [71] TCHAPMI L P, CHOY C B, ARMENI I, et al. SEGCloud: semantic segmentation of 3D point clouds[C]//Proceedings of 2017 International Conference on 3D Vision (3DV). Qingdao, China: IEEE, 2017: 537-547. DOI:10.1109/3DV.2017.00067. [72] QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu, HI, USA: IEEE, 2017: 77-85. DOI:10.1109/CVPR.2017.16. [73] QI C R, LI Y, SU H, et al. PointNet++: Deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st Annual Conference on Neural Information Processing Systems (NIPS). [S.l.]: Advances in Neural Information Processing Systems, 2017, 30: 5100-5109. [74] 王聪. 基于时空信息模型的智慧城市数字底座设计初探[J].测绘地理信息,2021,46(S1):162-164. DOI:10. 14188/j. 2095-6045. 2020088. WANG Cong. Preliminary study on design of digital base for smart city based on spatio-temporal information model[J]. Journal of Geomatics, 2021,46(S1):162-164. DOI:10. 14188/j. 2095-6045. 2020088. [75] YU Bailang, LIU H, WU Jianping, et al. Automated derivation of urban building density information using airborne LiDAR data and object-based method[J]. Landscape & Urban Planning, 2010, 98(3-4):210-219. DOI:10.1016/j.landurbplan.2010.08.004. [76] 顾建祥,杨必胜,董震,等.面向数字孪生城市的智能化全息测绘[J].测绘通报,2020(6):134-140. DOI: 10.13474/j.cnki.11-2246.2020.0196. GU Jianxiang, YANG Bisheng, DONG Zhen, et al. Intelligent perfect-information surveying and mapping for digital twin cities[J]. Bulletin of Surveying and Mapping, 2020(6):134-140. DOI:10.13474/j.cnki.11-2246.2020.0196. [77] SHI Shaoshuai, WANG Xiaogang, LI Hongsheng. PointRCNN: 3D object proposal generation and detection from point cloud[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). [S.l.]: IEEE, 2019:770-779. DOI: 10.1109/CVPR.2019.00086. [78] WU Hangbin, YAO Lianbi, XV Zeran, et al. Road pothole extraction and safety evaluation by integration of point cloud and images derived from mobile mapping sensors[J]. Advanced Engineering Informatics, 2019(42):100936.1-100936.11. DOI:10.1016/j.aei.2019.100936. [79] ZHANG Shanxin, WANG Cheng, LIN Lili, et al. Automated visual recognizability evaluation of traffic sign based on 3D LiDAR point clouds[J]. Remote Sensing, 2019, 11(12)1453. DOI:10.3390/rs11121453. [80] CHEN Zhuo, LIU Chun, WU Hangbin. A higher-order tensor voting-based approach for road junction detection and delineation from airborne LiDAR data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150(4): 91-114. DOI:10.1016/j.isprsjprs.2019.02.003. [81] LIU Jingbin, XU Dong, JUHA H, et al. A survey of applications with combined BIM and 3D laser scanning in the life cycle of buildings[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021(14): 5627-5637. DOI:10.1109/JSTARS.2021.3068796. [82] TM A, TY A, TK A, et al. Quantitative evaluation of peeling and delamination on infrastructure surfaces by laser signal and image processing of 3D point cloud data[J]. Automation in Construction, 2022(133)104023. DOI:10.1016/j.autcon.2021.104023. [83] JIA Shoujun, LIU Chun, GUAN Xianjun, et al. Bidirectional interaction between BIM and construction processes using a multisource geospatial data enabled point cloud model[J]. Automation in Construction, 2022(134)104096. DOI:10.1016/j.autcon.2021.104096. [84] 朱合华,李晓军,林晓东.基础设施智慧服务系统(iS3)及其应用[J].土木工程学报,2018,51(1):1-12. DOI: 10.15951/j.tmgcxb.2018.01.001. ZHU Hehua, LI Xiaojun, LIN Xiaodong. Infrastructure smart service system (iS3) and its application[J]. China Civil Eegineering Journal, 2018,51(1):1-12. DOI: 10.15951/j.tmgcxb.2018.01.001. [85] LIU Chun, SHAO Xiaohang, LI Weiyue. Multi-sensor observation fusion scheme based on 3D variational assimilation for landslide monitoring[J]. Geomatics Natural Hazards & Risk, 2019, 10(1):151-167. DOI: 10.1080/19475705.2018.1513871. [86] JI Shunping, YU Dawen, SHEN Chaoyong, et al. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks[J]. Landslides, 2020(17): 1337-1352. DOI:10.1007/s10346-020-01353-2. [87] GHORBANZADEH O, BLASCHKE T, GHOLAMNIA K, et al. Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection[J]. Remote Sensing, 2019, 11(2)196. DOI:10.3390/rs11020196. [88] 李玉美,郭庆华,万波,等.基于激光雷达的自然资源三维动态监测现状与展望[J].遥感学报,2021,25(1):381-402. DOI:10.11834/jrs.20210351. LI Yumei, GUO Qinghua, WAN Bo, et al. Current status and prospect of three-dimensional dynamic monitoring of natural resources based on LiDAR[J]. National Remote Sensing Bulletin, 2021,25(1):381-402. DOI:10.11834/jrs.20210351. [89] LIU Chun, AI Mengchi, CHEN Zhuo, et al. Detection of firmiana danxiaensis canopies by a customized imaging system mounted on an UAV platform[J]. Journal of Sensors, 2018, 2018(9):1-12. DOI:10.1155/2018/6869807. [90] HU Tianyu, MA Q, SU Yanjun, et al. A simple and integrated approach for fire severity assessment using bi-temporal airborne LiDAR data[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 78: 25-38. DOI:10.1016/j.jag.2019.01.007. [91] MA Q, SU Y, TAO Shengli, et al. Quantifying individual tree growth and tree competition using bi-temporal airborne laser scanning data: a case study in the Sierra Nevada Mountains, California[J]. International Journal of Digital Earth, 2018, 11(5):485-503. DOI10.1080/17538947.2017.1336578. [92] 霍芃芃,侯庆明,周庆,等.基于多种数据源的三维重建方法研究——以北京明长城为例[J].测绘通报,2020(S1):262-267.DOI:10.13474/j.cnki.11-2246.2020.0562. HUO Pengpeng, HOU Qingming, ZHOU Qing, et al. Research on 3D reconstruction based on multiple data sources: a case study of Ming Dynasty Great Wall in Beijing[J]. Bulletin of Surveying and Mapping, 2020(S1):262-267. DOI: 10.13474/j.cnki.11-2246.2020.0562. [93] ALLEN P K, TROCCOLI A, SMITH B, et al. New methods for digital modeling of historic sites[J]. IEEE Computer Graphics and Applications, 2003, 23(6): 32-41. DOI: 10.1109/MCG.2003.1242380. [94] SAMPATH A, JIE S. Segmentation and reconstruction of polyhedral building roofs from aerial lidar point clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010,48(3):1554 1567. DOI:10.1109/TGRS.2009.2030180. [95] 田继成,罗宏,吴邵明.三维激光扫描技术在云冈石窟13窟数字化中的应用[J].城市勘测,2014(4):23-26. TIAN Jicheng, LUO Hong, WU Shaoming. Application of 3D laser scanning technology in digital in Yungang grottoes cave 13[J]. Urban Geotechnical Investigation & Surveying, 2014(4):23-26. |
[1] | MA Weifeng, WANG Cheng, WANG Jinliang, ZHOU Jinchun, MA Yuanyuan. Extraction of power lines from laser point cloud based on residual clustering method [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(7): 883-892. |
[2] | ZHU Xiaoxiao, WANG Cheng, XI Xiaohuan, WANG Pu, TIAN Xinguang, YANG Xuebo. Hierarchical Threshold Adaptive for Point Cloud Filter Algorithm of Moving Surface Fitting [J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(2): 153-160. |
[3] | . Filtering of Airborn LiDAR Point Cloud Data Based on Car(p,q)-Model and Mathematical Morphology [J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(2): 219-224. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||