Acta Geodaetica et Cartographica Sinica ›› 2022, Vol. 51 ›› Issue (10): 2226-2238.doi: 10.11947/j.AGCS.2022.20220307
Previous Articles Next Articles
LING Qing1,2, ZHANG Qin2, ZHANG Jing2, QU Wei2, KONG Lingjie1, ZHU Li3, ZHANG Jinhui3
Received:
2022-05-05
Revised:
2022-06-30
Published:
2022-11-05
Supported by:
CLC Number:
LING Qing, ZHANG Qin, ZHANG Jing, QU Wei, KONG Lingjie, ZHU Li, ZHANG Jinhui. Stability evaluation of Dangchuan loess landslide in Heifangtai based on integration of engineering geological data and GNSS high-precision monitoring information[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2226-2238.
[1] 刘东生, 郑洪汉. 第二届全国第四纪学术会议[J]. 科学通报, 1965, 10(2): 175-176. LIU Dongsheng, ZHENG Honghan. The second national quaternary academic conference[J]. Cinese Science Bulletin, 1965, 10(2): 175-176. [2] 朱庆, 曾浩炜, 丁雨淋, 等. 重大滑坡隐患分析方法综述[J]. 测绘学报, 2019, 48(12): 1551-1561. DOI:10.11947/j.AGCS.2019.20190452. ZHU Qing, ZENG Haowei, DING Yulin, et al. A review of major potential landslide hazards analysis[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(12): 1551-1561. DOI:10.11947/j.AGCS.2019.20190452. [3] 侯东奇, 罗先启. 水库型滑坡灾害综合灾情评价模型研究[J]. 灾害学, 2005, 20(1): 26-30. HOU Dongqi, LUO Xianqi. Research on the model of reservoir landslides disaster evaluation[J]. Journal of Catastrophology, 2005, 20(1): 26-30. [4] 徐则民. 水岩化学作用对斜坡水文地质及滑坡的影响[J]. 自然灾害学报, 2007, 16(5): 16-23. XU Zemin. Effect of chemical water-rock interaction on hydrogeology and landslide of slope[J]. Journal of Natural Disasters, 2007, 16(5): 16-23. [5] 许强. 滑坡的变形破坏行为与内在机理[J]. 工程地质学报, 2012, 20(2): 145-151. XU Qiang. Theoretical studies on prediction of landslides using slope deformation process data[J]. Journal of Engineering Geology, 2012, 20(2): 145-151. [6] 吴树仁, 王涛, 石菊松, 等. 工程滑坡防治关键问题初论[J]. 地质通报, 2013, 32(12): 1871-1880. WU Shuren, WANG Tao, SHI Jusong, et al. A review of engineering landslide prevention and control[J]. Geological Bulletin of China, 2013, 32(12): 1871-1880. [7] 许强. 对滑坡监测预警相关问题的认识与思考[J]. 工程地质学报, 2020, 28(2): 360-374. XU Qiang. Understanding the landslide monitoring and early warning: consideration to practical issues[J]. Journal of Engineering Geology, 2020, 28(2): 360-374. [8] SAITO M. Forecasting the time of occurrence of a slope failure[C]//Proceedings of the 6th International Congress of Soil Mechanics and Foundation Engineering. Montreal, Canada:[s.n.],1965: 537-541. [9] 殷坤龙,晏同珍.滑坡预测及相关模型[J].岩石力学与工程学报,1996, (1):1-8. YIN Kunlong,YAN Tongzhen. Landslide prediction and relevant models [J]. Chinese Journal of Rock Mechanics and Engineering, 1996, (1):1-8. [10] GUO Zizheng, CHEN Lixia, GUI Lei, et al. Landslide displacement prediction based on variational mode decomposition and WA-GWO-BP model[J]. Landslides, 2020, 17(3): 567-583. [11] FU Zhiyong, LONG Jingjing, CHEN Wenqiang, et al. Reliability of the prediction model for landslide displacement with step-like behavior[J]. Stochastic Environmental Research and Risk Assessment, 2021, 35(11): 2335-2353. [12] NAYEK P S, GADE M. Artificial neural network-based fully data-driven models for prediction of newmark sliding displacement of slopes[J]. Neural Computing and Applications, 2022, 34(11): 9191-9203. [13] 张俊, 殷坤龙, 王佳佳, 等. 基于时间序列与PSO-SVR耦合模型的白水河滑坡位移预测研究[J]. 岩石力学与工程学报, 2015, 34(2): 382-391. ZHANG Jun, YIN Kunlong, WANG Jiajia, et al. Displacement prediction of Baishuihe landslide based on time series and PSO-SVR model[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 382-391. [14] 徐峰, 范春菊, 徐勋建, 等. 基于变分模态分解和AMPSO-SVM耦合模型的滑坡位移预测[J]. 上海交通大学学报, 2018, 52(10): 1388-1395, 1416. XU Feng, FAN Chunju, XU Xunjian, et al. Displacement prediction of landslide based on variational mode decomposition and AMPSO-SVM coupling model[J]. Journal of Shanghai Jiao Tong University, 2018, 52(10): 1388-1395, 1416. [15] 黄润秋, 许强. 斜坡失稳时间的协同预测模型[J]. 山地研究, 1997, 15(1): 7-12. HUANG Runqiu, XU Qiang. Synergetic prediction model of slope instability[J]. Journal of Mountain Research, 1997, 15(1): 7-12. [16] ZHANG Yonggang, CHEN Xinquan, LIAO Raoping, et al. Research on displacement prediction of step-type landslide under the influence of various environmental factors based on intelligent WCA-ELM in the Three Gorges Reservoir area[J]. Natural Hazards, 2021, 107(2): 1709-1729. [17] CROSTA G B, AGLIARDI F. Failure forecast for large rock slides by surface displacement measurements[J]. Canadian Geotechnical Journal, 2003, 40(1): 176-191. [18] 朱建军, 丁晓利, 陈永奇. 集成地质、力学信息和监测数据的滑坡动态模型[J]. 测绘学报, 2003, 32(3): 261-266. ZHU Jianjun, DING Xiaoli, CHEN Yongqi. Dynamic landsliding model with integration of monitoring information and mechanic information[J]. Acta Geodaetica et Cartographic Sinica, 2003, 32(3): 261-266. [19] DUNCAN J M. State of the art: limit equilibrium and finite-element analysis of slopes[J]. Journal of Geotechnical Engineering, 1996, 122(7): 577-596. [20] 陈祖煜, 弥宏亮, 汪小刚. 边坡稳定三维分析的极限平衡方法[J]. 岩土工程学报, 2001, 23(5): 525-529. CHEN Zuyu, MI Hongliang, WANG Xiaogang. A three-dimensional limit equilibrium method for slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 525-529. [21] 郑颖人, 赵尚毅, 邓楚键, 等. 有限元极限分析法发展及其在岩土工程中的应用[J]. 中国工程科学, 2006, 8(12): 39-61, 112. ZHENG Yingren, ZHAO Shangyi, DENG Chujian, et al. Development of finite element limit analysis method and its applications in geotechnical engineering[J]. Engineering Science, 2006, 8(12): 39-61, 112. [22] LOW B K, TANG W H. Efficient spreadsheet algorithm for first-order reliability method[J]. Journal of Engineering Mechanics, 2007, 133(12): 1378-1387. [23] LOW B K, ZHANG J, TANG W H. Efficient system reliability analysis illustrated for a retaining wall and a soil slope[J]. Computers and Geotechnics, 2011, 38(2): 196-204. [24] 苏国韶, 宋咏春, 燕柳斌. 高斯过程机器学习在边坡稳定性评价中的应用[J]. 岩土力学, 2009, 30(3): 675-679, 687. SU Guoshao, SONG Yongchun, YAN Liubin. Application of Gaussian process machine learning to slope stability evaluation[J]. Rock and Soil Mechanics, 2009, 30(3): 675-679, 687. [25] RANA H, BABU G L S. Regional back analysis of landslide events using TRIGRS model and rainfall threshold: an approach to estimate landslide hazard for Kodagu, India[J]. Bulletin of Engineering Geology and the Environment, 2022, 81(4): 160. [26] GRIFFITHS D V, LANE P A. Slope stability analysis by finite elements[J]. Géotechnique, 1999, 49(3): 387-403. [27] HE Kun, MA Guotao, HU Xiewen, et al. Failure mechanism and stability analysis of a reactivated landslide occurrence in Yanyuan city, China[J]. Landslides, 2021, 18(3): 1097-1114. [28] SARKAR S, PANDIT K, DAHIYA N, et al. Quantified landslide hazard assessment based on finite element slope stability analysis for Uttarkashi-Gangnani highway in Indian Himalayas[J]. Natural Hazards, 2021, 106(3): 1895-1914. [29] LIU Zhenyu, SU Lijun, ZHANG Chonglei, et al. Investigation of the dynamic process of the Xinmo landslide using the discrete element method[J]. Computers and Geotechnics, 2020, 123: 103561. [30] PENG Dalei, XU Qiang, LIU Fangzhou, et al. Distribution and failure modes of the landslides in Heitai terrace, China[J]. Engineering Geology, 2018, 236: 97-110. [31] XU Qiang, LI Huajin, HE Yusen, et al. Comparison of data-driven models of loess landslide runout distance estimation[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(2): 1281-1294. [32] 赵超英, 刘晓杰, 张勤, 等. 甘肃黑方台黄土滑坡InSAR识别、监测与失稳模式研究[J]. 武汉大学学报(信息科学版), 2019, 44(7): 996-1007. ZHAO Chaoying, LIU Xiaojie, ZHANG Qin, et al. Research on loess landslide identification, monitoring and failure mode with InSAR technique in Heifangtai, Gansu[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 996-1007. [33] 白正伟, 张勤, 黄观文, 等. “轻终端+行业云”的实时北斗滑坡监测技术[J]. 测绘学报, 2019, 48(11): 1424-1429. DOI: 10.11947/j.AGCS.2019.20180572. BAI Zhengwei, ZHANG Qin, HUANG Guanwen, et al. Real-time BeiDou landslide monitoring technology of “light terminal plus industry cloud”[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1424-1429. DOI: 10.11947/j.AGCS.2019.20180572. [34] LIU Guang, ZBIGNIEW P, STEFANO S, et al. Land surface displacement geohazards monitoring using multi-temporal InSAR techniques[J]. Journal of Geodesy and Geoinformation Science, 2021, 4(1): 77-87. [35] 许强, 朱星, 李为乐, 等. “天-空-地”协同滑坡监测技术进展[J]. 测绘学报,2022,51(7):1416-1436. DOI: 10.11947/j.AGCS.2022.20220320. XU Qiang, ZHU Xing, LI Weile, et al. Technical progress of space-air-ground collaborative monitoring of landslide[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1416-1436. DOI: 10.11947/j.AGCS.2022.20220320. [36] 李滨. 多级旋转型黄土滑坡形成演化机理研究[D]. 西安: 长安大学, 2009. LI Bin. Research on formation evolution mechanism of multiple rotational loess landslides[D]. Xi'an: Chang'an University, 2009. [37] 孙萍萍, 张茂省, 董英, 等. 甘肃永靖黑方台灌区潜水渗流场与斜坡稳定性耦合分析[J]. 地质通报, 2013, 32(6): 887-892. SUN Pingping, ZHANG Maosheng, DONG Ying, et al. The coupled analysis of phreatic water flow and slope stability at Heifangtai terrace, Gansu province[J]. Geological Bulletin of China, 2013, 32(6): 887-892. [38] 杨仲康. 黄土滑坡早期识别与险情预测: 以黑台灌区为例[D]. 兰州: 兰州大学, 2018. YANG Zhongkang. Early identification and danger prediction of loess landslide—a case study at irrigated area on Heitai, Gansu province, China[D]. Lanzhou: Lanzhou University, 2018. [39] LÜ Jingguo, YANG Xingbin, ZHANG Danlu, et al. High-resolution remote sensing image semi-global matching method considering geometric constraints of connection points and image texture information[J].Journal of Geodesy and Geoinformation Science,2021,4(4):97-112. [40] 张勤, 赵超英, 陈雪蓉. 多源遥感地质灾害早期识别技术进展与发展趋势[J]. 测绘学报,2022,51(6):885-896. DOI: 10.11947/j.AGCS.2022.20220132. ZHANG Qin, ZHAO Chaoying, CHEN Xuerong. Technical progress and development trend of geological hazards early identification with multi-source remote sensing[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(6): 885-896. DOI: 10.11947/j.AGCS.2022.20220132. [41] 李振洪, 朱武, 余琛, 等. 雷达影像地表形变干涉测量的机遇、挑战与展望[J]. 测绘学报,2022,51(7):1485-1519. DOI: 10.11947/j.AGCS.2022.20220224. LI Zhenhong, ZHU Wu, YU Chen, et al. Interferometric synthetic aperture radar for deformation mapping: opportunities, challenges and the outlook[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1485-1519. DOI: 10.11947/j.AGCS.2022.20220224. [42] 郭鹏. 黑方台农作物分区种植对地下水分布特征及滑坡灾害影响的研究[D]. 成都: 成都理工大学, 2019. GUO Peng. Study on the influence of crops planting in Heifangtai district on groundwater distribution characteristics and landslide disaster[D]. Chengdu: Chengdu University of Technology, 2019. [43] 王潇.灌溉入渗效应及其对斜坡稳定性的影响[D]. 西安:西北大学,2018. WANG Xiao. Infiltration law of irrigation water and its effect on slope stability in Heifangtai, Gansu [D]. Xi'an:Xi'bei University, 2018. [44] 王庆涛.黑方台灌区灌溉渗透作用模拟分析[D]. 西安:西安科技大学,2015. WANG Qingtao. Simulation analysis of irrigation infiltration on Heifangtai irrigation area [D]. Xi'an University of Science and Technology, 2015. |
[1] | HU Jiyuan. Monitoring technology and method of karst surface and structure deformation based on radar interferometry [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2243-2243. |
[2] | CHENG Jiehai, HUANG Zhongyi, WANG Jianru, HE Shi. The automatic determination method of the optimal segmentation result of high-spatial resolution remote sensing image [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 658-667. |
[3] | LIANG Zheheng, LI Xiao, DENG Peng, SHENG Sen, JIANG Fuquan. Remote sensing image change detection fusion method integrating multi-scale feature attention [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 668-676. |
[4] | BAI Kun, MU Xiaodong, CHEN Xuebing, ZHU Yongqing, YOU Xuanang. Unsupervised remote sensing image scene classification based on semi-supervised learning [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 691-702. |
[5] | HUANG Mingyi, WU Jun, GAO Jiongli. Seamless spherical video generation for multi-head panoramic camera(MPC) [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 703-717. |
[6] | WANG Dandi, XING Shuai, XU Qing, LIN Yuzhun, LI Pengcheng. Automatic sea-land waveform classification method for single-wavelength airborne LiDAR bathymetry [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 750-761. |
[7] | ZHANG Zhimin. Study of annual mass balance estimation in the Tibetan plateau glaciers based on remote sensing albedo [J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(5): 781-781. |
[8] | LI Yongqiang, LI Pengpeng, DONG Yahan, FAN Huilong. Automatic extraction and classification of pole-like objects from vehicle LiDAR point cloud [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 724-735. |
[9] | WANG Jingxue, LIU Suyan, WANG Weixi. A checking algorithm for pair-wise line matching based on collinearity constraint and matching redundancy [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 746-756. |
[10] | ZHAN Zongqian, HU Mengqi, MAN Yiyun. Multi-scale region growing point cloud filtering method based on surface fitting [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 757-766. |
[11] | HAN Bin, WU Yiquan. Robust estimation algorithm of active contour model for river extraction in SAR images [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 777-786. |
[12] | DENG Ruizhe, CHEN Qihao, CHEN Qi, LIU Xiuguo. A deformable feature pyramid network for ship detection from remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 787-797. |
[13] | HUANG Liang. Research on change detection technology in multi-temporal remote sensing images [J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(6): 801-801. |
[14] | WU Wenhao, ZHANG Lei, LI Tao, LONG Sichun, DUAN Meng, ZHOU Zhiwei, ZHU Chuanguang, JIANG Tingchen. Coregistration scheme and error analysis of multi-mode SAR image based on geometric coregistration [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1439-1451. |
[15] | ZHAO Shengyin, AN Ru, ZHU Meiru. Urban change detection by aerial remote sensing using combining features of pixel-depth-object [J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(11): 1452-1463. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||