Acta Geodaetica et Cartographica Sinica ›› 2023, Vol. 52 ›› Issue (4): 536-549.doi: 10.11947/j.AGCS.2023.20220097
• Geodesy and Navigation • Previous Articles Next Articles
CHEN Guanxu1,2, GAO Kefu3,4, ZHAO Jianhu5, LIU Jingnan3,4,5, LIU Yanxiong1,2,5,6, LIU Yang1,2, LI Menghao1,2,6
Received:2022-02-18
Revised:2023-02-11
Published:2023-05-05
Supported by:CLC Number:
CHEN Guanxu, GAO Kefu, ZHAO Jianhu, LIU Jingnan, LIU Yanxiong, LIU Yang, LI Menghao. The method of sound speed errors correction in GNSS-acoustic location service[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(4): 536-549.
| [1] 汪品先.深海浅说[M]. 上海:上海科技教育出版社, 2020. WANG Pinxian. A brief introduction to the deep sea[M]. Shanghai: Shanghai Science and Technology Education Press, 2020. [2] 刘经南, 陈冠旭, 赵建虎, 等. 海洋时空基准网的进展与趋势[J]. 武汉大学学报(信息科学版), 2019, 44(1): 17-37. LIU Jingnan, CHEN Guanxu, ZHAO Jianhu, et al. Development and trends of marine space-time frame network[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 17-37. [3] 刘经南. 全球性海洋时空基准与环境监测网构建的若干思考[R]. 杭州: 国家海洋局第二海洋研究所, 2015. LIU Jingnan. Some thoughts on the construction of a global marine space-time frame and environmental monitoring network[R]. Hangzhou: The Second Institute of Oceanography, State Oceanic Administration, 2015. [4] 杨元喜, 徐天河, 薛树强. 我国海洋大地测量基准与海洋导航技术研究进展与展望[J]. 测绘学报, 2017, 46(1): 1-8. DOI:10.11947/j.AGCS.2017.20160519. YANG Yuanxi, XU Tianhe, XUE Shuqiang. Progresses and prospects in developing marine geodetic datum and marine navigation of China[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(1): 1-8. DOI:10.11947/j.AGCS.2017.20160519. [5] YANG Yuanxi, XU Tianhe, XUE Shuqiang. Progresses and prospects of marine geodetic datum and marine navigation in China[J]. Journal of Geodesy and Geoinformation Science, 2018, 1(1):16-24. [6] 杨元喜, 刘焱雄, 孙大军, 等.海底大地基准网建设及其关键技术[J]. 中国科学:地球科学, 2020, 50(7):936-945. YANG Yuanxi, LIU Yanxiong, SUN Dajun, et al. Seafloor geodetic network establishment and key technologies[J]. China Science: Earth Science, 2020, 50(7):936-945. [7] YANG Yuanxi, LIU Yanxiong, SUN Dajun, et al. Seafloor geodetic network establishment and key technologies[J]. Science China Earth Sciences, 2020, 63(8):1188-1198. [8] 李林阳, 吕志平, 崔阳.海底大地测量控制网研究进展综述[J]. 测绘通报, 2018(1):8-13. LI Linyang, LÜ Zhiping, CUI Yang. Summary of the research progress of seafloor geodetic control network[J]. Bulletin of Surveying and Mapping, 2018(1):8-13. [9] 孙大军, 郑翠娥, 张居成, 等.水声定位导航技术的发展与展望[J]. 中国科学院院刊, 2019, 34(3):331-338. SUN Dajun, ZHENG Cuie, ZHANG Jucheng, et al. Development and prospect for underwater acoustic positioning and navigation technology [J]. Bulletin of Chinese Academy of Sciences, 2019, 34(3):331-338. [10] CHADWELL CD, SPIESS FN, HILDEBRAND JA, et al. Sea floor strain measurement using GPS and acoustics[M]//Gravity, Geoid and Marine Geodesy. Berlin, Heidelberg: Springer, 1997: 682-689. [11] CHADWELL CD. Shipboard towers for global positioning system antennas[J]. Ocean Engineering, 2003, 30(12):1467-1487. [12] ASADA A, YABUKI T. Centimeter-level positioning on the seafloor[J]. Proceedings of the Japan Academy, 2001, 77(1):7-12. [13] FUJIMOTO H, KIDO M, OSADA Y, et al. Long-term stability of acoustic benchmarks deployed on thick sediment for GPS/acoustic seafloor positioning[M]//Accretionary Prisms and Convergent Margin Tectonics in the Northwest Pacific Basin. Dordrecht: Springer, 2011: 263-272. [14] NISHIMURA T, SATO M, SAGIYA T. Global positioning system (GPS) and GPS-acoustic observations: Insight into slip along the subduction zones around Japan[J]. Annual Review of Earth and Planetary Sciences, 2014, 42:653-674. [15] ISHIKAWA T, YOKOTA Y, WATANABE S, et al. History of on-board equipment improvement for GNSS-A observation with focus on observation frequency[J]. Frontiers in Earth Science, 2020, 8:150. [16] KIDO M, FUJIMOTO H, HINO R, et al. Progress in the project for development of GPS/acoustic technique over the last 4 years[C]//Proceedings of 2014 International Symposium on Geodesy for Earthquake and Natural Hazards. International symposium on geodesy for earthquake and natural hazards (GENAH).Matsushima,Japan: Springer, 2014: 3-10. [17] SPIESS F N, CHADWELL C D, HILDEBRAND J A, et al. Precise GPS/acoustic positioning of seafloor reference points for tectonic studies[J]. Physics of the Earth and Planetary Interiors, 1998, 108(2):101-112. [18] CHADWELL C D, SPIESS F N. Plate motion at the ridge-transform boundary of the south cleft segment of the Juan de Fuca Ridge from GPS-acoustic data[J]. Journal of Geophysical Research: Solid Earth, 2008, 113: B04415. DOI: 10.1029/2007JB004936. [19] HONSHO C, KIDO M. Comprehensive analysis of traveltime data collected through GPS-acoustic observation of seafloor crustal movements[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(10): 8583-8599. [20] HONSHO C, KIDO M, TOMITA F, et al. Offshore postseismic deformation of the 2011 Tohoku earthquake revisited: application of an improved GPS-acoustic positioning method considering horizontal gradient of sound speed structure[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(6): 5990-6009. [21] SATO M, FUJITA M, MATSUMOTO Y, et al. Improvement of GPS/acoustic seafloor positioning precision through controlling the ship's track line[J]. Journal of Geodesy, 2013, 87(9):825-842. [22] TADOKORO K, ANDO M, IKUTA R, et al. Observation of coseismic seafloor crustal deformation due to M7 class offshore earthquakes[J]. Geophysical Research Letters, 2006, 33(23): 23306-1. [23] IKUTA R, TADOKORO K, ANDO M, et al. A new GPS-acoustic method for measuring ocean floor crustal deformation: application to the Nankai Trough[J]. Journal of Geophysical Research: Solid Earth, 2008, 113: B02401. DOI: 10.1029/2006JB004875. [24] YOKOTA Y, ISHIKAWA T, WATANABE S, et al. Seafloor geodetic constraints on interplate coupling of the Nankai Trough megathrust zone[J]. Nature, 2016, 534(7607): 374-377. [25] SATO M, ISHIKAWA T, UJIHARA N, et al. Displacement above the hypocenter of the 2011 Tohoku-Oki earthquake[J]. Science, 2011, 332(6036): 1395. [26] CHEN G, LIU Y, LIU Y, et al. Improving GNSS-acoustic positioning by optimizing the ship's track lines and observation combinations[J]. Journal of Geodesy, 2020, 94(6):1-14. [27] 刘伯胜, 雷家煜.水声学原理[M]. 哈尔滨:哈尔滨工程大学出版社, 2010. LIU Bosheng, LEI Jiayu. The principle of hydroacoustics [M]. Harbin: Harbin Engineering University Press, 2010. [28] 汪德昭, 尚尔昌.水声学[M]. 2版. 北京:科学出版社, 2013. WANG Dezhao, SHANG Erchang. Hydroacoustics[M]. 2nd ed. Beijing: Science Press, 2013. [29] KIDO M, FUJIMOTO H, MIURA S, et al. Seafloor displacement at Kumano-nada caused by the 2004 off Kii Peninsula earthquakes, detected through repeated GPS/acoustic surveys[J]. Earth, planets and space, 2006, 58(7):911-915. [30] MATSUI R, KIDO M, NIWA Y, et al. Effects of disturbance of seawater excited by internal wave on GNSS-acoustic positioning[J]. Marine Geophysical Research, 2019, 40:541-555. [31] 赵建虎, 梁文彪.海底控制网测量和解算中的几个关键问题[J]. 测绘学报, 2019, 48(9):1197-1202. DOI: 10.11947/j.AGCS.2019.20190157. ZHAO Jianhu, LIANG Wenbiao. Some key points of submarine control network measurement and calculation[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9):1197-1202. DOI: 10.11947/j.AGCS.2019.20190157. [32] HJELMERVIK K T, HJELMERVIK K. Improved estimation of oceanographic climatology using empirical orthogonal functions and clustering[C]//Proceedings of 2013 MTS/IEEE OCEANS-Bergen. Bergen, Norway: IEEE, 2013: 1-5. [33] 吴永亭. LBL精密定位理论方法研究及软件系统研制[D]. 武汉: 武汉大学, 2013. WU Yongting. Study on theory and method of precise LBL positioning and development of positioning software system[D]. Wuhan: Wuhan University, 2013. [34] 孙文舟, 殷晓冬, 暴景阳, 等. 声速剖面EOF表示的第一模态解析[J]. 海洋测绘, 2019, 39(3): 31-35. SUN Wenzhou, YIN Xiaodong, BAO Jingyang, et al. The first model analysis of sound speed profile represented by EOF[J]. Hydrographic Surveying and Charting, 2019, 39(3): 31-35. [35] ISHIKAWA T, FUJITA M. Inverse method and precision improvement for seafloor positioning[J]. Journal of the Oceanographical Society of Japan, 2005, 41:27-34. [36] FUJITA M, ISHIKAWA T, MOCHIZUKI M, et al. GPS/acoustic seafloor geodetic observation: method of data analysis and its application[J]. Earth, Planets and Space, 2006, 58(3): 265-275. [37] YANG Yuanxi, QIN Xianping. Resilient observation models for seafloor geodetic positioning[J]. Journal of Geodesy, 2021, 95(7): 79. [38] YASUDA K, TADOKORO K, TANIGUCHI S, et al. Interplate locking condition derived from seafloor geodetic observation in the shallowest subduction segment at the central Nankai Trough, Japan[J]. Geophysical Research Letters, 2017, 44(8):3572-3579. [39] WATANABE S I, ISHIKAWA T, YOKOTA Y, et al. GARPOS: analysis software for the GNSS-a seafloor positioning with simultaneous estimation of sound speed structure[J]. Frontiers in Earth Science, 2020, 8: 597532. [40] TOMITA F, KIDO M, HONSHO C, et al. Development of a kinematic GNSS-acoustic positioning method based on a state-space model[J].Earth, Planets and Space, 2019, 71(1): 1-24. [41] YOKOTA Y, ISHIKAWA T, WATANABE S I. Gradient field of undersea sound speed structure extracted from the GNSS-A oceanography[J]. Marine Geophysical Research, 2019, 40(4): 493-504. [42] YOKOTA Y, ISHIKAWA T. Gradient field of undersea sound speed structure extracted from the GNSS-A oceanography: GNSS-A as a sensor for detecting sound speed gradient[J].SN Applied Sciences, 2019, 1(7): 1-11. [43] YOKOTA Y, ISHIKAWA T, WATANABE S I, et al. Kilometer-scale sound speed structure that affects GNSS-a observation: case study off the kii channel[J]. Frontiers in Earth Science, 2020, 8: 331. [44] ZHAO S, WANG Z, HE K, et al. Investigation on underwater positioning stochastic model based on acoustic ray incidence angle[J]. Applied Ocean Research, 2018, 77: 69-77. [45] WANG Z, ZHAO S, JI S, et al. Real-time stochastic model for precise underwater positioning [J]. Applied Acoustics, 2019, 150:36-43. [46] LIU Y, XUE S, QU G, et al. Influence of the ray elevation angle on seafloor positioning precision in the context of acoustic ray tracing algorithm [J]. Applied Ocean Research, 2020, 105:102403. [47] 王薪普, 薛树强, 曲国庆, 等.水下定位声线扰动分析与分段指数权函数设计 [J]. 测绘学报, 2021, 50(7):982-989. DOI: 10.11947/j.AGCS.2021.20200424. WANG Xinpu, XUE Shuqiang, QU Guoqing, et al. Disturbance analysis of underwater positioning acoustic ray and design of piecewise exponential weight function[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7):982-989. DOI: 10.11947/j.AGCS.2021.20200424. [48] 马越原,曾安敏,许扬胤,等.声线入射角随机模型在深海环境中的应用[J]. 导航定位学报, 2020, 8(3):65-68. MA Yueyuan, ZENG Anmin, XU Yangyin,et al. Application of incidence angle stochastic model of acoustic lines under deep sea environment[J]. Journal of Navigation and Positioning, 2020, 8(3):65-68. [49] 郑根, 张红梅, 冯磊, 等.基于面积差的声速剖面自适应简化方法 [J]. 测绘学报, 2018, 47(10):1415-1423. DOI: 10.11947/j.AGCS.2018.20170232. ZHENG Gen, ZHANG Hongmei, FENG Lei, et al. An adaptive simplification method of SVP based on area difference[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(10):1415-1423. DOI: 10.11947/j.AGCS.2018.20170232. [50] CHEN X, ZHANG H, ZHAO J, et al. Positioning accuracy model of sailing-circle GPS-acoustic method[J]. Earth and Space Science, 2021, e2019EA000639. [51] 王振杰, 李圣雪, 聂志喜, 等. 水声定位中一种大入射角声线跟踪方法[J]. 武汉大学学报(信息科学版), 2016, 41(10): 1404-1408. WANG Zhenjie, LI Shengxue, NIE Zhixi, et al. A large incidence angle ray-tracing method for underwater acoustic positioning[J]. Geomatics and Information Science of Wuhan University, 2016, 41(10): 1404-1408. [52] 闫凤池, 王振杰, 赵爽, 等.顾及双程声径的常梯度声线跟踪水下定位算法 [J]. 测绘学报, 2022, 51(1):31-40. DOI: 10.11947/j.AGCS.2022.20210234. YAN Fengchi, WANG Zhenjie, ZHAO Shuang, et al. A layered constant gradient acoustic ray tracing underwater positioning algorithm considering round-trip acoustic path[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(1):31-40. DOI: 10.11947/j.AGCS.2022.20210234. [53] YANG Wenlong, XUE Shugiang, LIU Yixu. P-order secant method for rapidly solving the ray inverse problem of underwater acoustic positioning[J]. Marine Geodesy, 2021, 44(1): 3-15. [54] SUN D, LI H, ZHENG C, et al. Sound velocity correction based on effective sound velocity for underwater acoustic positioning systems [J]. Applied Acoustics, 2019, 151: 55-62. [55] 赵建虎, 张红梅, 吴猛.一种基于常梯度模板插值的声线跟踪算法 [J]. 武汉大学学报(信息科学版), 2021, 46(1):71-78. ZHAO Jianhu, ZHANG Hongmei, WU Meng. A sound ray tracking algorithm based on template-interpolation of constant-gradient sound velocity[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1):71-78. [56] LIU Yixu, LU Xiushan, XUE Shuqiang, et al. A new underwater positioning model based on average sound speed[J]. Journal of Navigation, 2021, 74(5): 1009-1025. [57] YANG Fanlin, LU Xiushan, LI Jiabiao, et al. Precise positioning of underwater static objects without sound speed profile[J]. Marine Geodesy, 2011, 34(2): 138-151. [58] XIN Mingzhen, YANG Fanlin, WANG Faxing, et al. A TOA/AOA underwater acoustic positioning system based on the equivalent sound speed[J]. Journal of Navigation, 2018, 71(6): 1431-1440. [59] 赵建虎.一种无需声速测量的水下高精度导航定位方法[R]. 青岛: 第四届中国大地测量和地球物理学学术大会, 2021. ZHAO Jianhu. An underwater high-precision navigation and positioning method without sound speed measurements [R]. Qingdao: The 4th Chinese Geodesy and Geophysics Conference, 2021. [60] 邝英才, 吕志平, 王方超, 等. GNSS/声学联合定位的自适应滤波算法[J]. 测绘学报, 2020, 49(7): 854-864. DOI: 10.11947/j.AGCS.2020.20190393. KUANG Yingcai, LÜ Zhiping, WANG Fangchao, et al. The adaptive filtering algorithm of GNSS/acoustic joint positioning[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(7):854-864. DOI: 10.11947/j.AGCS.2020.20190393. [61] KUANG Y, LÜ Z, LI L, et al. Robust constrained Kalman filter algorithm considering time registration for GNSS/acoustic joint positioning [J]. Applied Ocean Research, 2021, 107: 102435. [62] KUANG Y, LÜ Z, WANG J, et al. The GNSS/acoustic one-step positioning model with attitude parameters[C]//Proceedings of the 10th China Satellite Navigation Conference (CSNC). Beijing, China: Springer. 2019. [63] WANG J, XU T, LIU Y, et al. Kalman filter based acoustic positioning of deep seafloor datum point with two-step systematic error estimation [J]. Applied Ocean Research, 2021, 114: 102817. [64] WANG J, XU T, ZHANG B, et al. Underwater acoustic positioning based on the robust zero-difference Kalman filter[J]. Journal of Marine Science and Technology, 2021, 26: 734-749. [65] CHEN G, LIU Y, LIU Y, et al. Adjustment of transceiver lever arm offset and sound speed bias for GNSS-acoustic positioning[J]. Remote Sensing, 2019, 11(13):1606. [66] 刘焱雄, 彭琳, 吴永亭,等.超短基线水声定位系统校准方法研究[J]. 武汉大学学报(信息科学版), 2006, 31(7): 610-612. LIU Yanxiong, PENG Lin, WU Yongting, et al. Calibration of transducer and transponder positions[J]. Geomatics and Information Science of Wuhan University, 2006, 31(7): 610-612. [67] LIU H, WANG Z, ZHAO S, et al. Accurate multiple ocean bottom seismometer positioning in shallow water using GNSS/acoustic technique [J]. Sensors, 2019, 19(6): 1406. [68] ZHAO S, WANG Z, NIE Z, et al. Investigation on total adjustment of the transducer and seafloor transponder for GNSS/acoustic precise underwater point positioning[J]. Ocean Engineering, 2021, 221: 108533. [69] XU P, ANDO M, TADOKORO K. Precise, three-dimensional seafloor geodetic deformation measurements using difference techniques[J]. Earth, Planets and Space, 2005, 57(9):795-808. [70] 王毅.石油勘探中水下高精度定位算法研究[D]. 青岛: 中国石油大学(华东), 2014. WANG Yi. Research on algorithms of high-precision underwater positioning in petroleum exploration[D]. Qingdao: China University of Petroleum, 2014. [71] ZHAO S, WANG Z, HE K, et al. Investigation on stochastic model refinement for precise underwater positioning [J]. IEEE Journal of Oceanic Engineering, 2019, 45(4): 1482-1496. [72] 曾安敏, 杨元喜, 明锋, 等. 海底大地基准点圆走航模式定位模型及分析[J]. 测绘学报, 2021, 50(7): 939-952. DOI: 10.11947/j.AGCS.2021.20200529. ZENG Anmin, YANG Yuanxi, MING Feng, et al. Positioning model and analysis of the sailing circle mode of seafloor geodetic datum points[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(7): 939-952. DOI: 10.11947/j.AGCS.2021.20200529. [73] XUE S, YANG Y, YANG W. Single-differenced models for GNSS-acoustic seafloor point positioning[J]. Journal of Geodesy, 2022, 96(5): 1-22. [74] 张旭, 张永刚, 张健雪, 等. 一种新的声速剖面结构参数化方法[J]. 海洋学报, 2011, 33(5):54-60. ZHANG Xu, ZHANG Yonggang, ZHANG Jianxue, et al. A new model for calculating sound speed profile structure[J]. Acta Oceanologica Sinica, 2011, 33(5):54-60. [75] SAKIC P, CHUPIN C, BALLU V, et al. Geodetic seafloor positioning using an unmanned surface vehicle-contribution of direction-of-arrival observations[J]. Frontiers in Earth Science, 2021, 9:636156. [76] MUNK W H. Sound channel in an exponentially stratified ocean, with application to SOFAR[J]. The Journal of the Acoustical Society of America, 1974, 55(2):220-226. |
| [1] | Yijie ZHAO, Junting WANG, Tianhe XU, Jianxu SHU, Yangfan LIU. Correction method for time-varying sound speed errors in underwater geodetic datum positioning [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(8): 1452-1463. |
| [2] | Haichao WANG, Changqing WANG, Dinghao GUO, Zitong ZHU, Wei FENG, Min ZHONG. Detection of atmospheric density in the thermosphere and satellite orbital decay variations triggered by different intensities of geomagnetic storms using the GRACE-FO satellite [J]. Acta Geodaetica et Cartographica Sinica, 2025, 54(2): 248-261. |
| [3] | ZHAO Shuang, WANG Zhenjie, NIE Zhixi, HE Kaifei, LIU Huimin, SUN Zhen. Precise positioning method for seafloor geodetic stations based on the temporal variation of sound speed structure [J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(1): 41-50. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||